
IBM Maximo Asset Management
Version 7 Release 6

Integrating Data With External
Applications

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 383.

This edition applies to version 7, release 5, modification 0 of IBM Maximo Integration Framework and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2008, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Integrating data with external
applications 1
Integration framework overview. 1

Architecture 2
Framework for data exchange 2
Framework for operational management
product integration 4
Framework for user interface integration . . . 4

Enabling data export and import 5
Preparing the system 5

Configuring JMS queues 5
Configuring integration properties 5
Activating the cron task for JMS queues . . . 5
Exporting data to a test file 6
Importing data from a test file 6

Integration components. 7
Object structures 7

Object identification 7
Alternate keys 8
Object fields 8
Interface table and flat file considerations. . . 9
Modification of a predefined object structure . 9
Configuring an object structure 10

Channels and services 14
Publish channels. 14
Invocation channels 15
Object structure services 18
Enterprise services 18
Standard services 22

Endpoints and handlers 22
Configuring an endpoint 23
Predefined endpoint handlers 25

Integration web services 38
Web service sources 38
Web service deployment options 39
Web service deployment actions 40
Schema generation 40
Generation of a Web Services Description
Language file 41
UDDI registration 41
Creating and deploying web services 42
Web service interactions overview 44

External systems. 45
Configuring an external system. 46

Predefined integration content 59
Master data objects 59
Item and inventory objects 68
Documents objects 74
Transaction interface objects 83
System objects 93
Data loading order 106

Integration data processing 107
Planning to process data for integration . . . 107
Inbound data processing 108

Asynchronous processing of inbound
messages 108
Synchronous processing of inbound messages 109
Initiation of asynchronous processing of
inbound data 109
Initiation of synchronous processing of
inbound data 111
Processing sequences 112

Outbound data processing 115
Asynchronous integration with a publish
channel 115
Synchronous integration with an invocation
channel 117

Configuring integration processing 118
Configuring asynchronous processing of
inbound messages by using enterprise
services 118
Configuring asynchronous processing of
outbound messages by using publish
channels 119

Rule-based customization 120
Rule definitions for objects and records. . . 120
Processing rule definitions 121
Conditions and evaluations. 124
Integration controls 128
Configuring processing rules 131

Code-based customization 144
Customization Java classes and methods . . 144
Customization with automation scripts . . . 151
XSL mapping 167
Interface table user exit class 168

Configuring the integration framework 169
Integration system properties 169
JMS queue configuration 175

Creating and configuring a queue 176
Sequential queues 177
Continuous queues 178
Queue message format 182
Queue selectors 184
Viewing and deleting messages in a JMS
queue 185
Configuring queues with WebSphere MQ . . 186

Error management 187
Non-queue error management 187
Queue-based error management 187
Configuring error management 188
Error notification 188
Message reprocessing. 189
Error management with file-based data
import. 192
Interface table error management. 195
Common causes of errors 196
Error research 197
Message tracking 198

Cluster configuration 202
JMS queues in a server cluster. 202

© Copyright IBM Corp. 2008, 2014 iii

Configuring the cron task 205
Configuring a message processing server . . 206
Global directory configuration 206
Access to services by inbound messages . . 206

Integration security 207
Authentication security 207
Authorization security 214

Language support 216
Default processing of multiple languages . . 216
Multilanguage attributes. 216
Bidirectional language support 217
Bidirectional language formats 217
Configuring bidirectional language support
for external systems 218

Exporting and importing file-based data 218
Exporting and importing data in the External
Systems application 218

Exporting file-based data 218
Importing file-based data 219

Cron tasks for processing inbound data . . . 220
XMLFILECONSUMER cron task 221
FLATFILECONSUMER cron task 221

Configuring an application for data export and
import. 223

Defining the object structure content . . . 223
Enabling data import and export in an
application 224
Initiating data export and import in an
application 224

REST API 226
REST API framework. 226
Supported representations 227
Resource handlers and URIs 228
GET method. 228

Query parameters and operators 231
_opmodeor parameter 233
_rsStart and _maxItems parameters 233
_orderbyasc parameter 234
_includecols and _excludecols parameters 235
_dropnulls parameter. 236
_format and _compact parameters 237
Content negotiation of representations . . . 238
In-session scrolling 239
Caching of GET requests 239

PUT, POST, and DELETE methods 241
PUT method 241
POST method 242
DELETE method 243
Concurrent updates of resources 243

Service method queries and updates. 244
Service methods that use HTTP POST to
update resources 244
Service methods that use HTTP GET to
query resources. 245
Service methods that use HTTP GET to
query system data 247

HTTP header properties 247
Response codes. 249
Security in the REST API 249
Customization of the REST API 251
REST query parameters 252

REST system properties 256
External service calls 259

OSLC integration 259
OSLC implementation in Maximo Asset
Management 259
OSLC configuration 261

Specification of OSLC resources 261
Domain service providers 262
Saved queries 264
OSLC security 265
OSLC logging 266

HTTP transactions. 267
OSLC resource queries 267
Creation of a resource instance 272
Modification of resources 272
HTTP headers 275
HTTP response codes. 277

Integrating as an OSLC consumer 278
Creation of OSLC provider records 278
Designing an OSLC interaction 283
Creating interaction groups. 290
Example: Running an OSLC interaction . . 291
Public URI changes 293
Migration of OSLC integrations 293
Manual UI modification 294
OSLC properties 295

Integration queries 295
Query services 296
Creating an enterprise service query. 296
Web service queries 296
Query XML structure 297
Query selection criteria 300

Field selection 300
Field evaluation 302
Range selection. 302
Where clause selection 303

Interface tables 305
Creation of interface tables 306
Regeneration of interface tables 307
Deletion of interface tables and records. . . . 307
Format of interface tables 307
Interface table polling 311

Interface table polling cron task 311
Advanced interface table polling 312

Processing interface tables on an external system 313
Enabling inbound processing 313
Enabling outbound processing. 313

Integration modules 314
Integration module components 314

Integration module definitions. 314
Operational management products 315
Logical management operations 315

Implementation prerequisites 316
Implementation properties 317

Integration module parameters 317
Integration module process flow 318
Endpoints 318

Invocation channel or Java class implementation 319
Invocation channel and Java class
comparison 319
Invocation channel implementation 321

iv Integrating Data With External Applications

Java class implementation 322
Integration module processing. 323

Identification of integration components . . 323
Integration module invocation. 324
Integration module response processing . . 327

Configuring integration modules 327
Creating integration modules 327
Selecting logical management operations for
integration modules 328
Associating a logical management operation
with an integration module. 329

Configuring logical management operations . . 331
Creating logical management operations . . 331
Adding attributes to logical management
operations 332

Launch in Context feature 332
Preparation of the external application 333
Launch entry URL into an external application 333
Launch entry URL into a product application 333
Enabling launch-in-context 334

Creating a launch entry 334

Configuring a signature option for a launch
point 336
Adding a launch point to an application
menu 336
Adding a button as a launch point 337
Adding a condition to a launch point . . . 337

Integration reference information 338
Integration system properties 338
Integration XML 344

Overview. 344
XML structure 346
Integration XML schemas 356

Collaboration switches 368
Format of collaboration switches 368
Retrieving a collaboration switch 369
Configuring collaboration switches 370
Predefined collaboration switches 372

Notices 383
Trademarks 384

Contents v

vi Integrating Data With External Applications

Integrating data with external applications

The integration framework helps you to integrate application data with other
applications, either within your enterprise or with external systems. The
framework includes predefined content that enables integration with a number of
business objects, and a tool kit that you can use to extend predefined integration
content and to develop new integration points.

Integration framework overview
The integration framework helps you to integrate application data with other
applications, either within your enterprise or with external systems. The
framework includes predefined content that enables integration with a number of
business objects, and a tool kit that you can use to extend predefined integration
content and to develop new integration points.

The integration framework includes the following components and features:
v Predefined integration content
v Applications to create and configure integration components
v Support for multiple communication modes including web services, hyper text

transfer protocol (HTTP), and Java Message Service (JMS) messaging
v Support for different data formats, including database interface tables, XML and

JavaScript Object Notation (JSON) messages, and flat files such as
comma-separated text files

v Event-based, batch, program-initiated, and user-initiated processing and
context-based launch of external applications

v Support for integration to operational management products (OMPs)
v Support for clustered environments
v Support for interacting with applications that support the Open Services for

Lifecycle Collaboration (OSLC) integration specification. The integration
framework can enable an application to be an OSLC consumer application that
can integrate with an external application that has implemented OSLC provider
capabilities.

The integration framework provides multiple options for sending and receiving
data. Evaluate which approach is the most efficient for your requirements when
you are planning an integration. Some typical integration scenarios include:
v Load files with legacy data during an implementation.
v Synchronize master data between a product application and an external ERP

application.
v Use web services to enable real-time querying of product application data by an

external application.
v Call an external application to validate data that is entered in a product

application.

If you want to import a large number of records from an external system, import
the data in batch files or use interface tables. This approach separates the data so
that multiple messages are processed as separate transactions. With a single
transaction that processes synchronously, such as a web service call, limit the
number of messages in a single transaction to ensure that the transaction processes

© Copyright IBM Corp. 2008, 2014 1

in an acceptable length of time. When you are planning an integration, evaluate
which integration option is most appropriate for your requirements.

Predefined integration content includes support for a number of business objects
and insert, update, and delete functions on these business objects is enabled. When
you use predefined content, there are certain limitations that can affect your
implementation. If business rules exist within the business object that do not allow
a function, for example the delete function, the function is not available for
integration. In addition to support for insert, update and delete operations, the
product applications support other functions that are available as actions.
Predefined integration content does not support all the actions that are available.
In most cases, the Change Status action is supported through integration.
Related concepts:
“Predefined integration content” on page 59
The integration framework provides predefined integration content, including
object structures, publish channels and enterprise services that support importing
data from external system or exporting data to them.

Architecture
The integration framework architecture includes the data, transport,
communication, and security components required to exchange information
between separate applications and systems.

Framework for data exchange
The framework for data exchange includes components and tools that you can use
to implement different types of integration scenarios.

Components

The framework includes predefined integration components and applications you
can use to configure components. The main components are described in the
following table.

Table 1. Integration framework data exchange components

Component Description

Object structures An object structure is the common data layer that the integration
framework components use for outbound and inbound application
message processing. An object structure consists of one or more
related business objects that define the content of an XML message
(schema).

Business objects Application business objects are available as Representational State
Transfer (REST) resources for queries and updates by using the
REST API component of the integration framework.

Publish channels A publish channel is used for sending asynchronous messages,
through a JMS queue, to an external system. Publish channel
messages can be initiated via an event or through the Data Export
feature.

Invocation channels Invocation channels are used for sending synchronous messages to
an external system and processing the response content. The
channel supports the implementation of processing logic and
mapping of the request and the response. An invocation channel
also allows for response data to be used to update business objects
and be displayed to application users.

2 Integrating Data With External Applications

Table 1. Integration framework data exchange components (continued)

Component Description

Enterprise services An enterprise service is a pipeline for querying and importing data
from an external system. An enterprise service can process data
synchronously (without a queue) or asynchronously (with a
queue). Enterprise services can use multiple protocols, such as web
services and HTTP.

External systems An external system is defined for the external application that you
plan to integrate with. The external system identifies the
communication protocol to use and which enterprise services,
publish channels, and JMS queues to implement for that external
system.

Endpoints and
handlers

An endpoint and its associated handler routes outbound messages
to an external system. The combination of an endpoint and handler
specify the transport protocol, such as HTTP or web service, and
provide the communication data required to reach the destination,
such as a URL.

Web services You can deploy integration framework services, such as enterprise
or object structure services, as web services that external systems
can invoke.

Data import and
export

You can load data from either XML files or flat files, such as a
comma-separated text file. You can initiate data import and export
from a product application and you can schedule a batch process
to perform an import as a background process. You can export one
or more records to a file using a Publish Channel, where filter
conditions can be applied to control the content of the data that is
exported.

Content The integration framework provides predefined content that
includes object structures, corresponding enterprise services and
publish channels, an external system, and predefined handlers that
support different communication protocols.

Processing

As integration messages flow in and out, the framework provides options, such as
Java classes, XSL mapping and processing rules, to provide message
transformation logic and business rules to meet your integration requirements.

Communication

The integration framework can facilitate asynchronous or synchronous data
exchange. Asynchronous messages are processed through the Java Message Service
(JMS) queues. JMS queues can process messages in order of priority (sequential), or
in a multi-threaded manner (continuous). Synchronous messages that require a
response to the sender are not processed through the JMS queues and require a
direct connection between the integration framework and the external application.

You can configure multiple communication protocols, including HTTP, web
services, and JMS messaging.

When integrating with multiple external applications, you can configure different
channels and services to use different communication protocols, including HTTP,
web services, and JMS messaging, based on the capabilities of each individual
external application.

Integrating data with external applications 3

Security

The integration framework uses the product support for J2EE authentication
security so that you can configure for Enterprise Java Beans (EJBs), HTTP, and web
services. You can configure authorization security for applications, objects, and
standard service methods.
Related concepts:
“REST API” on page 226
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli®'s process automation engine.

Framework for operational management product integration
Process management products can integrate with operational management
products in an automated mode using integration modules. Process management
products can use the launch in context feature to integrate with operational
management products in an assisted mode.

The process management product provides an action Java class that initiates the
call to an integration module, and subsequently the operational management
product. The process management product then processes the response from the
operational management product.

A logical management operation defines the action that the process management
product takes on the operational management product. The logical management
operation identifies the following properties:
v The name and description of the action that it supports
v Whether processing is synchronous or asynchronous
v The input (source) and output (target) objects and fields for the transaction

The integration module provides a mechanism for a process management product
to call an external operational management product. When it is started by a
process management product, the integration module uses data provided by the
process management product to assist in calling the operational management
product service. The integration module can also return any response data to the
process management product.

Operational management products provide services that integration modules can
call to initiate operational management product actions.

Framework for user interface integration
You can configure the integration framework to open a window in an external
application and provide data to include in the context of that window.

You can configure a console URL for any application with a web-based console,
and you can configure URLs for consoles that use Java Web Start. You cannot use a
launch entry to open applications that are not enabled for the web. You can
configure a launch point from any product application. You can provide access to
launch points as actions, as hyperlinks, and in application buttons.

You can use the same approach to open a product application window from an
external application.

4 Integrating Data With External Applications

Enabling data export and import
Before using the integration framework to exchange data with an external
application, you must configure the components required for inbound and
outbound communication. These procedures describe the minimum configuration
steps required in order to validate that you can export data to a file and import
data from a file.

Preparing the system
To enable integration, you must perform some configuration tasks related to
system properties, JMS queues, and cron tasks.

Configuring JMS queues
JMS queues are configured on the application server. JMS queue configuration can
be automatic or manual on the WebSphere® Application Server. JMS queue
configuration is always a manual procedure on the WebLogic Server.

Procedure
1. Confirm that the JMS queues are configured.
2. Confirm that message-driven beans are enabled for the continuous queue.

Configuring integration properties
Before you enable the integration framework, modify the default settings for
integration properties to settings that are appropriate to your environment.

Procedure
1. In the System Properties application, filter for the properties you want to

configure. If you filter for mxe.int in the Property field, all integration
properties are listed.

2. Select the mxe.int.dfltuser property and verify that the user account that is
specified is a valid system user account. Modify the property value if necessary.
The property specifies the default login ID that is used for all integration
transactions that are processed by an inbound JMS queue.

3. Optional: You can configure a global directory where a single file location can
hold integration-related files on the file system. The Maximo® Asset
Management servers must have access to the global directory on the file
system. For example, when you use a file-based endpoint that does not have a
configured file location, the file that is generated by the endpoint is placed in a
default directory in the global directory. You can configure the name of the
global directory in the mxe.int.globaldir system property.

Activating the cron task for JMS queues
For asynchronous processing, integration messages are placed in JMS queues. Cron
tasks poll the JMS queues at frequent intervals and then process messages that are
found in the queues.

Procedure
1. In the Cron Task Setup application, search for the JMSQSEQCONSUMER cron

task.
2. Verify that the cron task is configured to poll both the SEQQIN and the

SEQQOUT queues.
3. Set the Active check box for each queue.
4. Click Save.

Integrating data with external applications 5

5. Click the Reload Request action.

Exporting data to a test file
To validate that outbound processing is correctly configured and enabled, run a
test export.

About this task

To test outbound processing, this task uses the data export feature to export a
person record to a file. The task uses the following predefined integration
components:
v External system: EXTSYS1
v Publish channel: MXPERSONInterface, which uses the MXPERSON object

structure
v Endpoint: MXXMLFILE

Procedure
1. In the Systems tab, ensure that the Enabled check box is selected for the

EXTSYS1 external system.
2. In the Publish Channels tab, filter for the MXPERSONInterface publish channel.
3. In the Details section for the MXPERSONInterface publish channel, specify

MXXMLFILE in the End Point field.
4. Click Data Export.
5. In the Data Export window, specify 1 in the Count field to limit the export to

just one record.

Results

If a location is not specified in the FILEDIR property, the XML file is exported to
the location that you specified in the mxe.int.globaldir property.

Importing data from a test file
To validate that inbound processing is correctly configured and enabled, run a test
import.

Procedure
1. Open the test file that you exported in a text editor and perform the following

modifications:
a. Change the <PublishMXPERSON> tag to <SyncMXPERSON> to change

the operation for inbound processing.
b. Add a suffix to the LASTNAME value, such as LASTNAME_TEST, to

make it easy to verify the change when you import the test file.
c. Save the file.

2. On the System tab of the External Systems application, ensure that the
Enabled check box is selected for the EXTSYS1 external system.

3. On the Enterprise Services tab, filter for the MXPERSONInterface enterprise
service.

4. Select the MXPERSONInterface row, and clear Use Continuous Queue.
5. Click Save.
6. Select the MXPERSONInterface row and click Data Import.
7. In the Data Import window, specify the following values:

6 Integrating Data With External Applications

a. Select the XML file option.
b. In the Specify Import File field, navigate to the modified test file and

select it.
8. Click OK.
9. In the People application, filter for the test record and verify that the value in

the Last Name field includes the suffix that you added.
10. Delete the suffix to restore the record to its original value and click Save.

Integration components
Depending on the scope and requirements of your implementation, you can create
new components or copy, modify, or extend the predefined components.

Duplicating an integration component and modifying the copy has several
advantages. The copy of an integration component becomes a user-defined entity,
and modification restrictions that apply to the predefined component do not apply
to the copy. The original version of the component is unchanged. To avoid
modifying a component while it is being used for transaction processing, perform
all modifications in administrator mode.

Object structures
An object structure is the common data layer that the integration framework
components use for sending and receiving data in Maximo Asset Management. An
object structure consists of one or more related business objects that define the
content of an integration message.

An object structure provides the message content for channels and services and
enables application-based import and export. In addition, an object structure, on its
own, can be called as a service, supporting the Create, Update, Delete, Sync, and
Query operations.

Object identification
Identification of what data to include in an object structure requires some
knowledge of applications and their associated objects. Review the data model of
an application to determine which objects, database tables, and views contain the
data that you must transfer to and from an external system.

You must find out which objects populate the database tables. Generally, a
one-to-one relationship exists between an object and a database table. However, in
some cases, multiple objects write data to a single table.

A predefined object structure is provided for exchanging data in the person object
with an external system. If no predefined object structure existed, to create one,
you determine that the data that you require resides in the PERSON, PHONE,
EMAIL, and SMS tables. The database tables have the same name as the
corresponding objects. Include these objects in the object structure that you create.
The name of the object structure must begin with an alphabetic character.

When an object structure contains multiple objects, the object structure is arranged
as a hierarchy, with a root object (the top or main object) and child objects. An
object structure can support any number of levels of objects in its hierarchy. You
must specify a valid parent-child for relationship for all objects under the top level
of the hierarchy and you cannot reference the same object more than once in the

Integrating data with external applications 7

same branch of the hierarchy. When you create an object structure, start by adding
the main (top-level) object. You can then add more objects as child objects of the
parent object.

Alternate keys
Inbound message processing relies on the key field(s) of an object to find an
existing record in the system to support updates and deletes. The default
processing relies on the primary key to retrieve existing records. Sometimes a
primary key is unknown to an external application and an alternate key (known
by the external system) is defined to support the updating and deleting of records
by the external system.

An inbound message normally uses the primary key of an object to look up and
process records that already exist in the system. However, sometimes a primary
key is an internally-generated value that is not available to the external system. In
such cases, you can define an alternate key for an object and the external system
passes the alternate key field(s) that the integration framework uses, instead of the
primary key fields, to retrieve the data for that object.

You can specify an alternate key for an object either at object level or at object
structure level. If you specify an alternate key at object level, all object structures
that include the object use the same alternate key. If you specify an alternate key at
the object structure level, you can use different object structures to specify a
different alternate key for each external data source that the object uses. You define
the index that make up an alternate key for an object in the Database
Configuration application. After you create the index, you can select it as an
alternate key for the object.

During inbound processing, the integration framework processes the alternate key
and primary key in the following order:
v Processes the alternate key of the object structure, if one is configured.
v Processes the alternate key of the object, if one is configured and an alternate

key is not configured for the object structure.
v Uses the object primary key if an alternate key is not configured for either the

object structure or the object.

After you specify an alternate key, inbound messages can fail if you change or
drop the alternate key index.

Object fields
The integration framework and the external system exchange a subset of the data
columns in the objects within the object structure. Subject to certain restrictions,
you can control the content of the object fields within the message by including
persistent and nonpersistent columns of individual objects.

A business object can have many fields, most of which may not be necessary for an
integration scenario. When you configure an object structure, you can select which
fields to include in integration messages and improve the performance of message
transfer between applications. By default, the objects in an object structure include
all the persistent columns of the objects. A persistent column is a data field that an
object uses to write data to a database table as part of its processing. To control the
content size, you can exclude persistent columns that you are not exchanging with
external applications. Only the included persistent columns are part of the XML

8 Integrating Data With External Applications

message for outbound messages. For inbound messages, only the object columns
that are included in the object structure are updated. Do not exclude any column
that is part of a primary or alternate key.

By default, an object structure excludes most nonpersistent columns in the
component objects. A nonpersistent column is a temporary data field that an object
uses for calculations or temporary storage. You can include additional
nonpersistent columns in the object structure. For example, objects that contain the
persistent column DESCRIPTION also contain the nonpersistent column
DESCRIPTION_LONGDESCRIPTION. Most predefined object structures include
this nonpersistent column because many integration scenarios require long
description fields. If this field is not included, it is not part of the integration
messages.

If you change the message content of an object structure that is being used for an
interface table, the interface table must be regenerated to reflect the updated
content of the object structure.

Interface table and flat file considerations
If you use an object structure for exchanging data with interface tables or flat files,
you must ensure that the object structure does not contain duplicate column
names.

You must select the Flat Supported check box for any object structure that you
intend to use for interface table or flat file integration scenarios. When this option
is set, messages are checked to ensure that every column for every object in the
object structure has a unique name. If duplicate column names exist, you can
create an alias field name for on the of the duplicate names. Modifying the alias
ensures that all column names are unique and the system can generate the
interface table or flat file without errors. Interface tables require that all columns
that are included in the corresponding object have an alias name of 18 or fewer
characters.

Modification of a predefined object structure
There are certain restrictions if you modify a predefined object structure.

You can add objects to a predefined object structure, but you cannot delete
predefined objects from the object structure. To avoid this restriction,make a
duplicate of the predefined object structure to create a user-defined object
structure, and delete objects from the duplicated version.

You can include and exclude persistent and nonpersistent columns, subject to the
standard validations that apply during integration processing. Outbound messages
include the columns for objects that you add to an object structure. Test inbound
messages to ensure that any columns that you added are processed successfully. If
the additional object columns are not processed successfully, add an object
structure processing class to handle the inbound processing.

If you use the object structure in interface tables or flat files, check for alias
conflicts. An alias conflict can occur if two objects in an object structure that
supports flat files have columns with the same name. When you check for alias
conflicts, duplicate names are identified and you can assign alias names to use as a
substitute to override the conflict. If you use interface tables, regenerate the table
for every enterprise service or publish channel that uses the modified object
structure.

Integrating data with external applications 9

Configuring an object structure
You can create new object structures and during that process you can generate
schema files, include or exclude fields, and resolve alias conflicts. You can also
specify inbound setting restrictions, set advanced configuration properties, and
configure application authorization.

Creating object structures:

When you create an object structure, you define a group of related objects to be
part of an integration message that you exchange with external applications. You
can identify data fields for each business object that determines the content of
integration messages.

About this task

During the configuration, you can define the Java classes, if needed, that process
inbound and outbound messages. You also can define an application that provides
authorization rules for the integration messages processed through the object
structure. If the object structure is intended for querying only and you do not want
to use it for updating, select the Query Only option. If the main object in the
object structure has a relationship to itself as a child object, set the Self Reference
option.

Procedure

1. In the Object Structures application, click New Object Structure.
2. In the Object Structure field, specify an object structure identifier.
3. Optional: If you are using the object structure for query operations, select the

Query Only check box.
4. Optional: If you are using interface tables or flat files to exchange data between

the integration framework and an external system, select the Support Flat File
Structure check box.

5. In the Consumed By field, specify the module that uses the object structure.

Option Description

INTEGRATION Integration framework

MIGRATIONMGR Migration manager

REPORTING Reporting

OSLC OSLC

6. In the Source Objects table window, click New Row.
7. Enter values in the following fields to create a business object hierarchy:

v Object

v Parent Object

v Reporting Description

v Relationship

v Object Order

8. Click Save Object Structure.

What to do next

If the Alias Conflict check box is selected on the object structure record, you can
add or modify an alias to correct the duplicated field names in your source objects.

10 Integrating Data With External Applications

You can also specify the persistent and nonpersistent fields that you want to
exclude and include from the object structure.

Configuring an alternate key:

To configure an alternate key, create a unique index in the Database Configuration
application and reference this index as the alternate key for an object structure or
for a specific object.

About this task

If you set the alternate key at the object level, the key applies to all uses of the
object in any object structure. If you set the alternate key within the object
structure, the key applies to the object only when it is accessed through the
selected object structure.

Procedure

1. Identify the field(s) of an object to use as the alternate key.
2. Select the object in the Database Configuration application.
3. Create a unique index for the field(s) in the Indexes tab.
4. Specify this index in the Alternative Key field in one of the following tabs:

a. In the Object tab of the Database Configuration application if you want to
apply the alternate key to the object for all external data sources.

b. In the Object Structures tab of the Database Configuration application if you
want to apply the alternate key to this specific usage of the object.

Including nonpersistent fields in the object structure:

Business objects use nonpersistent fields for calculations or for temporary storage
of data. By default, the nonpersistent fields on a business object are excluded from
the object structure definition. You can include data from nonpersistent fields in
integration messages.

Before you begin

If you want to change a predefined object structure, make a duplicate of that object
structure to create a user-defined version that is suitable for modification.

Procedure

1. In the Object Structures application, select the object structure that you want to
update.

2. Select the business object that contains the nonpersistent field that you want to
include.

3. Select the Exclude/Include Fields action.
4. Click the Non-Persistent Fields tab to display the nonpersistent fields in the

business object.
5. Specify whether you want the nonpersistent field to be included or excluded.

Option Included

Include the field Selected

Exclude the field Cleared

6. Click OK.

Integrating data with external applications 11

Excluding persistent fields from the object structure:

Business objects use persistent fields to write processing data to a database. By
default, persistent fields are included in the object structure definition. You can
exclude persistent field data that you do not want to map to an integration
message.

Before you begin

If you want to change a predefined object structure, make a duplicate of that object
structure to create a user-defined version that is suitable for modification.

About this task

You cannot exclude a field that is part of a primary key. If you exclude a persistent
field from a predefined object structure, the associated object might not function
properly during inbound message processing. Test your inbound messages to
ensure that an excluded persistent field does not impact the object processing.

Procedure

1. In the Object Structures application, select the object structure that you want to
update.

2. Select the business object that contains the persistent field that you want to
exclude.

3. Select the Exclude/Include Fields action.
4. Click the Persistent Fields tab to display the persistent fields in the business

object.
5. Specify whether you want the persistent field to be excluded or included.

Option Excluded

Exclude the field Selected

Include the field Cleared

6. Click OK.

Resolving alias conflicts:

An object structure that contains multiple objects and supports flat files or interface
tables, cannot have duplicate field names for any of the fields in its objects. You
must resolve any field name (alias) conflicts before you can generate interface
tables and flat file records.

About this task

If an alias conflict exists, the Alias Conflict check box is selected on the object
structure record. You can change an alias only if the Support Flat File Structure
check box is selected on the record, indicating that the data is processed using
interface tables or flat files.

Procedure

1. When an alias conflict exists, select a business object in the Source Objects table.
2. Select the Add/Modify Alias action. If a duplicate alias exists for a field, the

corresponding Duplicate check box is selected.

12 Integrating Data With External Applications

3. To update a duplicate alias:
a. Click View Details for the duplicate alias.
b. Specify a new value in the ALIASNAME field.
c. Click OK.

What to do next

After you resolve all alias conflicts, you can generate interface tables and flat file
records. If you use interface tables, you must regenerate all tables that use the
updated object structure. To regenerate interface tables, select the Create Interface
Tables action in the External Systems application.

Setting restrictions on fields in inbound messages:

Standard integration processing sets the values in object fields with the
corresponding values from an inbound message. You can set a field as restricted if
you do not want the value to be updated by inbound messages, for example for a
field with an internal ID or where a processing class provides the logic to set the
field.

Procedure

1. Select the Inbound Setting Restrictions action.
2. In the Inbound Setting Restrictions window, select the object that you want to

apply setting restrictions to. The Inbound Setting Restrictions table refreshes
with a list of the fields that are configured for the selected object.

3. Select the Restricted check box for any field that you do not want to be
updated with values in inbound messages.

4. You can select the Override check box to remove the restrictions set for a field.
You cannot override the restriction set on some fields, for example for a field
with a system-generated ID.

5. Click OK.

Setting advanced configurations for an object structure:

You can set advanced configurations for an object structure to change some default
processing behavior for integration messages. Advanced configurations include
configuring how key fields are processed for child objects, whether an event on a
child object activates a corresponding event on the parent object, and whether
auto-generated data is deleted.

Procedure

1. Select the Advanced Configuration action.
2. Deselect the Exclude Parent Key Attributes check box for any object where you

want these attributes to be included for child objects. When checked (the
default), key fields that exist in a child object are not included in the section of
the message for the child object if the same field is part of the key of the parent
object. If you deselect this option, key fields for a child object are always
included and the field is included in both the child object section of the
message and the parent object section.

3. Deselect the Delete Auto-generated Data check box for any object where you
want to retain this data. When checked (the default), integration processing
always deletes any child-level data that is automatically created by the business

Integrating data with external applications 13

object logic when the parent object is created. If you deselect this option, any
additional data that is auto-generated is retained.

4. Check the Propagate Event option for any object where you want an event on a
child object to trigger an event on the main object. When you configure a
publish channel to send messages based on an object event, the event listener is
configured for the main object of the object structure. In some cases, an update
to a child object does not trigger an event on the main object and no message is
initiated. Check this option if you want an update to the child object to trigger
an event to the main object without updating the main object. If a child object
includes logic that triggers an event to its parent object, you cannot enable or
disable it with this configuration.

Channels and services
Channels and services reference an object structure for their message content and
enable the synchronous and asynchronous exchange of data with external systems.
Two types of channel process outbound messages; publish channels and invocation
channels. Three types of service process inbound messages; object structure
services, enterprise services, and standard services.

Publish channels
A publish channel is used for sending asynchronous messages through a JMS
queue to an external system. Publish channel messages can be initiated via an
event or through the Data Export feature.

The integration framework includes predefined publish channels or you can
configure new publish channels. When configuring a publish channel, you must
associate it with an object structure, and, optionally, enable an event listener. You
must also configure the publish channel with an external system to determine
where the message is delivered to.

You can also configure processing rules, Java processing classes, or XSL mapping
to customize transaction processing of the publish channel.

Configuring a publish channel:

To use a publish channel for data export, you must create the publish channel,
associate it with an object structure, and enable an event listener. You must also
configure an endpoint that routes the transaction to a specified external system.
You can also configure publishing rules, Java processing classes, or XSL mapping
to customize transaction processing.

Creating publish channels:

You can create a publish channel record to send integration messages to an
external system.

Before you begin

Before you create and configure a publish channel, use the Object Structures
application to configure the object structure that you intend to associate with the
publish channel.

Procedure

1. In the Publish Channels application, click New Publish Channel.
2. In the Publish Channel field, specify a name for the publish channel.

14 Integrating Data With External Applications

3. In the Object Structure field, specify the object structure to use with the
publish channel. The Object Structure Sub-Records section refreshes with details
of the objects that are contained in this object structure.

4. Optional: If you intend to use an interface table as the data source, specify its
name in the Interface Table field. The object structure must be configured to
support flat files to be used with interface tables

5. Optional: If you intend to customize outbound processing logic, specify the
paths for the Java Classes and the XSL style sheet in the following fields:
a. Processing Class

b. User Exit Class

c. XSL Map

d. Event Filter Class

Any Java classes you specify must be part of the application EAR file. An XSL
file can be within the EAR file or located on an accessible file system.

6. Optional: You can configure processing rules for the publish channel.
7. Optional: If necessary, clear the Retain Objects check box to prevent the

publish channel from processing business object-based rules.
8. Click Save Publish Channel.

What to do next

You can enable a publish channel listener to direct the integration framework to
build and process the selected publish channel. You can also use the External
Systems application to associate the publish channel with an external system and
identify an endpoint for delivering messages from the publish channel.

Enabling publish channel listeners:

You enable an event listener on a publish channel to monitor for processing
activity on the associated publish channel objects. Publish channel processing is
initiated when an event occurs on the main object of the associated object
structure.

Procedure

1. In the Publish Channels application, select the publish channel that you want to
configure with an event listener.

2. Select the Enable Event Listener action.
3. Click OK to enable the publish channel listener. The details for the publish

channel refresh and the Event Listener check box is now selected.

What to do next

Select Disable Event Listener action if you want to disable the event listener at
any time..

Invocation channels
Invocation channels define the processing logic and mapping of inbound and
outbound data, which enables the integration framework to call external
applications and process responses. No predefined invocation channels are
provided.

Integrating data with external applications 15

Creating invocation channels:

You can create an invocation channel record to send outbound data from an object
structure to an external system and to process responses from the external system.

Before you begin

You must include the defined processing class, user exit class, and XSL mapping
files in the application EAR file. You also must define an XSL mapping filename
path that is accessible by the application server.

Procedure

1. In the Invocation Channels application, click New Invocation Channel.
2. In the Invocation Channel field, specify an invocation channel identifier.
3. Enter values in the following fields:

v Adapter

v Endpoint

4. Optional: If this invocation channel processes responses from an external
application, select the Process Response check box.

5. In the Service Request Configuration table window, enter values in the
following fields:

Option Description

Request Object Structure The object structure that is used to define
the content for outbound data processing.

Request Processing Class The Java class file that is used when the
invocation channel requires predefined
outbound processing logic.

Request User Exit The class file that the invocation channel
uses to customize the predefined
outbound processing logic

Request XSL File The XSL file that is used to customize
predefined outbound invocation channel
mapping.

6. Optional: If you selected the Process Response check box, enter values in the
following fields in the Service Response Configuration table window:

Option Description

Response Object Structure The object structure that is used to define
the content for the response.

Response Processing Class The Java class file that is used when the
invocation channel requires predefined
inbound processing logic for the response.

Response User Exit Class The class file that the invocation channel
uses to customize the predefined inbound
processing logic for the response.

Response XSL File The XSL file that is used to customize
predefined inbound invocation channel
mapping for the response.

7. Click Save Invocation Channel.

16 Integrating Data With External Applications

What to do next

You can view the XML schema of the object structure using a URL with the
following format:

http://localhost:port/meaweb/schema/service/object_structure_name

Configuring an action to call an invocation channel:

The integration framework provides a default action class that you can configure
as a system action. By providing this action class, you can configure a user
interface control, an escalation, or a workflow to invoke an external service using
an invocation channel.

Procedure

1. Create an invocation channel in the Invocation Channels application.
2. Create an action in the Actions application.
3. Specify an object for the action. This object must be the same as the main object

of the request object structure of the invocation channel and the main object of
the application, workflow, or escalation that invokes the action.

4. Specify Custom Class in the Type field.
5. Specify the name of the custom class in the Variable field. You can use the

name of the default class provided for this purpose,
psdi.iface.action.InvokeCustomClass, or an alternative class name if you
created your own custom class to invoke an external system.

6. Specify values in the Parameters/Attributes field. Specify the values in the
following order, and separate each value with a comma:
a. Required: The name of the invocation channel to use. The value must be

precisely the same as the name of the invocation channel.
b. Optional: The name of the relationship to use if the main object of the

response object structure is different from the main object of the request
object structure in the invocation channel. If the response object is the same
as the request object, no relationship is required.

c. Optional: If you specified a relationship, specify the action to apply. The
default action is Add, which creates records. To update existing records,
specify Change as the action. If the request and response object structures
are the same, the objects are updated if updated fields are mapped into the
response object structure.

7. Specify whether to apply the action to all applications, to workflows, or
applications.

8. Save the action.

What to do next

Associate an application, workflow, or escalation with the action. The main object
is passed to the action class and then to the object structure of the invocation
channel to form the request XML.

Integrating data with external applications 17

Invoking an external system from an application:

After configuring an action class to invoke an external system (via an invocation
channel), you can configure a button in an application to trigger the invocation
action. You can also extend the action class to display the results of the transaction
in an application dialog box.

Before you begin

You must create an invocation channel and an action class before you add the
invocation action to an application. If you intend to show the results of the
invocation, create a Results (dialog) window in advance.

Procedure

1. Open the application in the Application Designer application. The main object
for this application must be same as the main object for the invocation channel
and the action that you intend to call from the application.

2. Add a Button Group control to the workspace from the Control Palette. The
Button Group control automatically adds a Pushbutton control to the
workspace.

3. Click Properties to open the Pushbutton Properties window.
4. Specify a name for the button in the Value field, for example Invoke External

System.
5. Specify the Control ID for the Results window in the Target ID field.
6. Specify a method in the Value field that calls the invocation channel and

redirects the results to the Results window. For example:
InvokeChannelCache.getInstance().getInvokeChannel(channelName)
.invoke(metaData, mbo, mbo.getMboSet(rel), action, null);

Where:
v The channelName value is the name of the invocation channel.
v The mbo value is the name of the object.
v The rel value is the name of the relationship (if applicable).
v The action value is Add.

Object structure services
When you configure an object structure, no additional configuration is necessary to
make it available as a service or a REST resource.
Related concepts:
“REST API” on page 226
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli's process automation engine.

Enterprise services
An enterprise service is a pipeline for querying external data and importing data
from an external system. An enterprise service can process data synchronously
(without a queue) or asynchronously (with a queue). Enterprise services can use
multiple protocols, such as web services and HTTP.

An enterprise service has data processing layers that transform data and apply
business processing rules to data before the it reaches the target objects. When the

18 Integrating Data With External Applications

inbound message reaches the object structure layer, the XML message must be in
the format of the object structure schema. The integration framework can then can
process the message successfully.

You can configure an enterprise service to implement the following transaction
processing:
v Processing rules
v User exit Java processing class
v Enterprise service processing class
v XSL mapping

The gateway is the entry point for enterprise service messages, excluding those
that are delivered directly from an external queue to the integration queue. For
some integration scenarios, it can be useful to configure gateway properties, for
example if properties such as system IDs are provided within the XML message
rather than in the header information. You can configure an interpreter Java class
to change the external system ID, the enterprise service ID, or other JMS message
header properties that are provided in an inbound message. Alternatively, you can
configure gateway properties in the Enterprise Services application.

Configuring an enterprise service:

When you create an enterprise service, you associate it with an object structure.
You can also configure gateway properties that are added to the header
information of inbound messages.

Creating an enterprise service:

You can create an enterprise service record to receive inbound data from an
external system. On the enterprise service, you can identify the data transformation
and processing rules that the integration framework uses to receive inbound data
from an external system.

Before you begin

Before you create and configure an enterprise service, use the Object Structures
application to configure the object structure that you associate with the enterprise
service.

About this task

When the Use External Schema check box is selected, the Split Tag, External
Schema File, and External Schema Element fields are editable. The external
schema values identify the schema location and external root element name.

Procedure

1. In the Enterprise Services application, click New Enterprise Service.
2. In the Enterprise Service field, specify an enterprise service identifier.
3. Enter a values in the following fields:

v Object Structure

v Adapter

4. Optional: Enter values in the following fields:

Integrating data with external applications 19

Option Description

Operation Determines how the Enterprise Service
processes data. For example, you can
synchronize objects or create new objects.

You can also update, delete, or query
existing objects.

Multiplication Control Determines the cross-reference control that
the enterprise service uses to multiply an
inbound message for multiple
organizations or sites.

Interface Table Reflects the content of the enterprise
service object structures.

Split Tag Identifies whether the received message
contains multiple instances of a document.

For example, a single message can contain
ten purchase orders. The split process
handles each of these instances
individually. The application writes
multiple files to the inbound queue.

The syntax that you use to identify these
node values should have a fully qualified
XPATH expression.

5. Optional: To use an external schema, select the Use External Schema check box.
6. Optional: You can customize inbound enterprise service processing logic by

completing the following steps:
a. In the Processing Class field, enter a class value if the enterprise service

requires predefined inbound processing logic.
b. In the User Exit Class field, enter a class value the enterprise service uses to

customize the predefined inbound processing logic.
c. In the XSL Map field, enter a value to customize the predefined inbound

enterprise service mapping.
7. Click Save Enterprise Service.

What to do next

You can use the External Systems application to associate the enterprise service
with an external system.

Configuring additional object structures for an enterprise service:

An enterprise service must be associated with a primary object structure. You can
add additional object structures to an enterprise service to support updating
additional data that is not included in the primary object structure of the enterprise
service. Based on the defined processing order, the enterprise service processes
additional object structures before it processes its primary object structure.

Procedure

1. In the Enterprise Services application, display the service for which you want
to add an object structure.

2. Select the Add/Modify Additional Object Structure action and click New Row.

20 Integrating Data With External Applications

3. Enter values in the following fields:
v Object Structure

v Processing Order

4. Optional: You can customize inbound enterprise service processing logic by
completing the following steps:
a. In the Processing Class field, enter a class value if the enterprise service

requires predefined inbound processing logic.
b. In the User Exit Class field, enter a class value the enterprise service uses to

customize the predefined inbound processing logic.
c. In the XSL Map field, enter a value to customize the predefined inbound

enterprise service mapping.
d. In the Multiplication Control field, enter a value to define the

cross-reference control that the enterprise service uses to multiply an
inbound message for multiple organizations or sites.

5. Click OK.

Adding gateway properties to an enterprise service:

The gateway is the entry point for enterprise service messages, excluding those
that are delivered directly from an external queue to the integration queue. An
interpreter Java class can be implemented that can change the external system
(SENDER) or the enterprise service (INTERFACE) and can set other JMS header
properties as needed. In the Enterprise Services application, you can set gateway
properties either as hard-coded values or by specifying XML tags.

Before you begin

Review the following points about the settings in the Gateway Properties before
you configure the gateway properties:
v If you select the XML Tag check box and leave the Value field null, the gateway

uses the name of the root element in the XML message as the value for the
corresponding property.

v If you select the XML Tag check box and enter a tag name in the Value field, the
gateway uses the value for that tag as the value for the corresponding property.

v If the tag appears multiple times in the XML message, the adapter uses the
value of the first occurrence of the tag. If you clear the XML Tag check box and
enter a data value in the Value field, the gateway uses that data as the value for
the corresponding property.

Procedure

1. In the Enterprise Services application, display the service for which you want
to add a gateway property.

2. Select the Gateway Properties action.
3. In the Gateway Properties for Enterprise Service table window, click New Row.
4. In the Property field, specify the name of the property that you want to include

in the message.
5. In the Value field, type the data that you want to use as the value of the

property.
6. Optional: Specify whether you want to use the XML root element as the value

of the corresponding property.

Integrating data with external applications 21

Option XML Tag

Use the XML root element Selected

Do not use the XML root element Cleared

7. Click OK.

Standard services
A standard service is based on an annotated method in an application. A standard
service is specific to the method annotated for an object and is not reusable for
other objects. You can deploy a standard service as a web service. You can access a
standard service by using the REST API.

A standard service is a service that an application provides for performing a
specific operation on an object. Standard services are available only for methods
that are properly annotated within the service. The service schemas that are
generated for standard services are used only by the corresponding actions.
Related concepts:
“REST API” on page 226
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli's process automation engine.

Endpoints and handlers
An endpoint and its associated handler routes outbound messages to an external
system. The combination of an endpoint and handler specifies the transport
protocol to use, such as HTTP or web service, and provides the communication
data required to reach the destination, such as a URL.

For a data export using a publish channel, the cron task for the outbound queue
invokes the handler. For a data export using an invocation channel, the invocation
channel invokes the handler directly. The handler uses the metadata properties of
the message to determine the external system (for a publish channel transaction)
and any override values configured for the endpoint properties. The handler then
sends the data to the destination that is specified by the endpoint with which the
handler is associated. A single handler can have multiple endpoints, where each
endpoint contains different parameters.

Endpoints and handlers are used for outbound integration only. However, the
interface table endpoint and handler also support the creation of interface tables,
which are needed for inbound integration.

Endpoints provide the execution parameter values that the handler uses to perform
its function. The metadata included with the endpoint definition, together with the
outbound integration message, are used by the handler at the time of execution.
Some handlers, not all, have predefined endpoints. These can be modified or new
endpoints configured using the endpoint application. The following table lists
predefined endpoints.

Endpoint Handler Description

MXFLATFILE FLATFILE Writes outbound integration messages in a
flat file format to a specified directory
location.

22 Integrating Data With External Applications

Endpoint Handler Description

MXIFACETABLE IFACETABLE Writes outbound integration messages to
interface tables.

MXXMLFILE XMLFILE Writes outbound integration messages in an
XML file format to a specified directory
location.

MXCMDLINE CMDLINE Implements the CMDLINE handler. Takes a
command and endpoint as input and uses
the SSH protocol to invoke the command on
the target system and return the results.

A number of predefined handlers are provided. For several of these handlers,
corresponding endpoint definitions have been configured. The endpoint definition
provides the metadata values for the handler parameters, such as a directory name
for the FLATFILE handler.

Configuring an endpoint
In the End Points application, you can create an endpoint that specifies how
outbound transactions are delivered and the handler that routes them.

Creating endpoints:

You create an endpoint to identify a target location and the transport mechanism
that the integration framework, or deployment manager uses to publish data, or to
invoke a service.

Procedure

1. In the End Points application, click New End Point.
2. In the End Point field, specify an identifier for the endpoint.
3. In the Handler field, specify a value. The Consumed By field displays the

information that is associated with the specified endpoint handler.
4. In the Properties for End Point window, click View Details of the endpoint

property field and perform the following actions:
a. Add a unique value to the Value field to identify the endpoint property.
b. Add a value to the Encrypted Value to identify whether the endpoint

property needs additional security for storage and display. You can update
an encrypted value only on an endpoint with a password property.

c. Select the Allow Override check box to identify whether you can overwrite
the code for the endpoint property. Select this check box when you use an
invocation channel processing class.

5. Click Save End Point.

What to do next

You can add a handler to specify how to route outbound data to a specific
endpoint location in a specific format. You can use the endpoint in the following
integration framework applications:
v External Systems
v Publish Channels
v Invocation Channels
v Integration Modules

Integrating data with external applications 23

v Logical Management Operations

Adding a handler to an endpoint:

You can add a handler to an endpoint record to specify how to route outbound
data to a specific endpoint location. You can also add a handler to define the data
format that is used in the data transfers. When you create a handler, you must
identify the specific Java™ class file that contains the processing logic that you need
for data transfers.

About this task

You cannot modify or delete a predefined handler.

Procedure

1. In the End Points application, select the endpoint that you want to update with
handler information.

2. Select the Add/Modify Handlers action.
3. Click New Row.
4. Enter values in the following fields:

v Handler

v Handler Class Name

v Consumed By

5. Click OK.

Writing custom handlers:

You can write a custom handler and associate it with an endpoint, for example to
support communication with an FTP server.

About this task

The handler class displays the properties for which you must specify values. The
FTPHandler.java file in the psdi.iface.samples directory contains an example of
an FTP handler.

Procedure

1. To write a custom handler, implement the RouterHandler interface.
2. Specify the following method to return a list of properties that the handler uses

to send data to the endpoint:
getParameter()

The method returns a list of RouterPropsInfo objects. The isCrypto attribute in
the RouterPropsInfo object indicates whether to encrypt the property value
while storing data. For password properties, the value of this attribute is True.

3. Specify the following method to send data to the specified endpoint:
sendData(Map metaData, byte[] data, Map destinationMap)

The method returns the following information:
v Metadata provides information about the external system and the interface.
v Data is the XML data.
v DestinationMap specifies the endpoint.

24 Integrating Data With External Applications

Predefined endpoint handlers
Predefined handlers are provided that you can associate with an endpoint.
Additionally, you can create and register custom handlers when needed.

Enterprise bean handler:

The Enterprise Java Bean (EJB) handler is a Java component that consists of
enterprise bean clients. The handler publishes a set of properties that a client uses
to communicate with and deliver an integration message to a target client. The
target client can run on the local application server or on a remote application
server.

To establish a connection, the remote Java class and the home Java class must be
available in the class path of the handler. If the client is on a remote application
server that is different from the handler application server, the client jar file
reference must be in the class path of the handler. The handler picks up the context
factory class name from the local application server when the enterprise bean client
is on a remote application server that is the same as the handler application server.

CONTEXTFACTORY property

This required property specifies a J2EE context factory class name. The
documentation for your application server contains the name of the default context
factory to use.

The CONTEXTFACTORY uses the following property when the target client runs
on an IBM WebSphere Application Server:
com.ibm.websphere.naming.WsnInitialContextFactory

EJBEXIT property

This optional property is used for customization and specifies the fully qualified
name of a custom Java class that implements the EJBExit interface.

If you do not specify a value for this property, the DefaultEJBExit interface is
executed and attempts to resolve the enterprise bean method signature and
parameters.

If the enterprise bean client has its own method signature and parameters, create a
Java class that contains your version of the EJBExit interface and implementations
of the following methods:
public Class[] getClassParams()

The getClassParams() method returns the method signature in the form of an array
of Java classes.

public Object[] getObjectParams(byte[] data, String interfaceName, Map
String,? metaData)throws MXException

The getObjectParams() method returns the parameters of the enterprise bean
business method in the form of an array of Java objects.
public void responseOk(Object response)throws MXException

The responseOk() method is called after a successful enterprise bean invocation.
public void responseError(Exception e) throws MXException

Integrating data with external applications 25

The responseError() method is called with the originating exception as a parameter
if an error is encountered during enterprise bean invocation.

The following code illustrates what your implementation of getClassParams() looks
like when the enterprise bean client has a business method with a byte array and a
string:
Class[] classParams = {byte[].class, String.class};
return classParams;

The following code illustrates what your implementation of getObjectParams ()
looks like when the enterprise bean client has a business method with a byte array
and a string:
byte[] data = ...;
String ifaceType = ...;

Object[] objParams = {data,ifaceType};
return objParams;

Complete one of the following actions to identify the location of the package
structure for the EJBExit class file:
v Place the class in the Java package structure in the applications/maximo/

businessobjects/classes directory.
v Modify the mboweb\webmodule\META-INF\MANIFEST.MF class path to include the

package structure.
v Rebuild the application EAR file and include the EJBExit class file.

JNDINAME property

This required property specifies the name by which the enterprise bean client is
registered in the Java Naming and Directory Interface (JNDI) tree on the
WebSphere Application Server. The filename is ibm-ejb-jar-bnd.xml and the
property is set to
<ejbBindings xmi:id="Session_enterpriseservice_Bnd"

jndiName="ejb/maximo/remote/enterpriseservice">
<enterpriseBean xmi:type="ejb:Session"

href="META-INF/ejb-jar.xml#Session_enterpriseservice"/>
</ejbBindings>

METHODNAME property

This required property specifies the public business method that is exposed by the
enterprise bean client that is invoked by this handler.

PROVIDERURL property

This required property specifies the URL of the target application server on which
the enterprise bean is running. The system then maps to the
java.naming.provider.url property and creates the InitialContext object.

The following example is an IBM WebSphere Application Server provider URL.
corbaloc:iiop:hostname:iiopport

If the handler and the target enterprise bean are running on the same application
server instance, do not specify this property because it defaults to the local server
URL.

26 Integrating Data With External Applications

USERNAME and PASSWORD properties

The user name and password properties correspond to the
java.naming.security.principal (USERNAME) and
java.naming.security.credentials (PASSWORD) properties that are used to create
the InitialContext object.

Flat file handler:

The FLATFILE handler converts an outbound integration message into a flat file
and writes it to a directory that has a configurable location. Flat files contain ASCII
data in the form of rows and columns. Each line of text constitutes one row, and a
separator character separates each column in the row. The FLATFILE handler
encodes outbound flat files in the standard UTF-8 format.

The FLATFILE handler can be used only with publish channels, not invocation
channels. The object structure associated with the publish channel must be
configured to support flat files. You must resolve all alias conflicts for the object
structure and format the XML message according to the object structure schema
before writing the message to a flat file.

Naming conventions

File names require the following format.

externalsystemname_publishchannelname_uniqueidentifier.dat

v externalsystemname is the identifier of the system (the value of
MAXVARS.MXSYSID).

v publishchannelname is the name of the publish channel.
v uniqueidentifier is a number based on current system time.

The following example file name indicates that the file goes to the external system
EXTSYS1 and was published through the MXASSETInterface publish channel:

EXTSYS1_MXASSETInterface_10971102668641498.dat

The first two lines of the file contain header information. The first line has the
following format:

externalsystemname <separator> publish channel name <separator> [action]
<separator> langcode

The second line of the file contains the names of the columns, separated by the
separator character. The column names are the same as the names in the
corresponding interface table.

Flat file format

If the data in the flat file contains the flat file delimiter character, the data adds the
text qualifier, which is " (quotation marks). If the data contains quotation marks,
the handler escapes the quotation marks. You cannot use quotation marks as the
delimiter character.

Integrating data with external applications 27

The following example data uses a comma (,) as a delimiter. The INVOICEDESC
value, (Rotating Custom Item, No 71), contains a comma. When the flat file is
written, the INVOICEDESC value is enclosed in quotation marks.
EXTSYS1,MXINVOICEInterface,Add
INVOICENUM,INVOICEDESC,PONUM,VENDOR,CONTACT,PAYMENTTERMS
1071,"Rotating Custom Item, No 71",1000,A0001,,

The following example data uses a comma (,) as a delimiter. The INVOICEDESC
value (Rotating "Custom" Item No 71) contains double quotation marks. When the
flat file is written, double quotation marks in INVOICEDESC data ends with
quotation marks, and the entire string is wrapped in quotation marks.
EXTSYS1,MXINVOICEInterface,Add
INVOICENUM,INVOICEDESC,PONUM,VENDOR,CONTACT,PAYMENTTERMS
1071,"Rotating ""Custom"" Item No 71",1000,A0001,,

The following example data uses a comma (,) as a delimiter. The INVOICEDESC
data (Rotating "Custom" Item, No. 71) contains the delimiter character and
double quotation marks. When the flat file is written, the INVOICEDESC value
appears in the code.
EXTSYS1,MXINVOICEInterface,Add
INVOICENUM,INVOICEDESC,PONUM,VENDOR,CONTACT,PAYMENTTERMS
1071,"Rotating ""Custom"" Item, No. 71",1000,A0001,,

Flat file properties

The FLATFILEDIR property is an optional property that specifies the location of
the flat file. The location must exist on the local server where the JMS CRON task
for the outbound queue is running, or on an accessible shared network drive. The
default value points to the global directory/flatfiles directory. To specify a location
for the global directory, configure the mxe.int.globaldir property in the System
Properties application.

The FLATFILESEP property is a required property that specifies the character that
separates the columns in each row.

HTTP handler:

The HTTP handler is a Java component that consists of properties. The handler
delivers an outbound integration message as an XML document to a URL by using
HTTP or HTTPS protocols. The HTTP handler also evaluates the response code
received from the external system.

HTTPEXIT property

This optional property is used for customization and specifies the fully qualified
name of a Java class that interprets the HTTP response. This property also helps
implement the code that is required for an external system to interpret the HTTP
response.

The Java class must be available in the application EAR file and must be in the
class path of the handler.

Property Value

Java class DefaultHTTPExit.java

Package psdi.iface.router

28 Integrating Data With External Applications

Property Value

HTTPEXIT
property

psdi.iface.router.DefaultHTTPExit

If you do not specify a value for this property, the DefaultHTTPExit exit class is
executed and implements the psdi.iface.router.HTTPExit interface. The Java class
has the following key methods:
v processResponseData()

This method has the following signature:
public void processResponseData(int responseCode, String responseMsg,
byte[] msgBodyData) throws MXException

The default implementation compares the response code from the external
system to a range of valid codes (values 200 through 299). If the response code
falls outside that range, the system assumes that the message was not delivered
to the external system. An exception occurs and the message remains in the
queue.
If you need additional processing for a specific implementation, extend the
default implementation and override the processResponseData () method. As an
alternative, you can implement the psdi.iface.router.HTTPExit interface. If the
response that is received from the external system does not pass the validation
in this class, the overriding method must issue an exception.
If you do not define a value for this property, the default implementation of
HTTPExit is run.

v getURLProperties()
This method has the following signature:
public Map String, String getURLProperties(Map String,? metaData, byte[]
data, Map String,MaxEndPointPropInfo httpInfo)

This method returns the map of URL properties that are added to the URL in
the form url?prop1=value1&... The default implementation returns a null value.

v getHeaderProperties()
This method has the following signature:
public Map String, String getHeaderProperties(Map String,? metaData,
byte[] data, Map String,MaxEndPointPropInfo httpInfo)

This method returns a map of the HTTP header properties for the request. The
default implementation returns a null value unless a header property map is
associated with the metadata map that has the HEADERPROPS key.

v transformPayloadToFormData()
This method has the following signature:
public Map String, String transformPayloadToFormData(Map String,?
metaData, byte[] data,Map String,MaxEndPointPropInfo destinationMap)

This method converts the XML payload to data. The default implementation
returns a null value.

CONNECTTIMEOUT property

This optional property specifies the connection timeout value in milliseconds.

READTIMEOUT property

This optional property specifies the read timeout value in milliseconds.

Integrating data with external applications 29

HTTPMETHOD property

This required property specifies a valid HTTP method that is executed by the
endpoint. Valid HTTP methods are GET, POST, PUT, and DELETE.

HTTPHEADER property

This optional property can add a comma-separated list of names and values to the
header section of HTTP messages. The list includes name and value information in
the format of Headername1:Headervalue1, Headername2:Headervalue2. If no value
is provided in the property, custom code can inject the values into the transaction
context during invocation channel processing.

URL property

This optional property specifies a valid URL to which XML data can be posted or
where an HTTP GET operation can be performed.

USERNAME and PASSWORD properties

If the URL requests basic authentication, these properties specify the required
values. Both values are MIME encoded and are passed to the URL.

IFACETABLE handler:

The IFACETABLE handler consists of several properties. This handler writes an
outbound integration message to an interface table in a local or remote database.
There are no Java exit classes for this handler.

Only publish channels can use the IFACETABLE handler. Invocation channels
cannot use this handler.

ISREMOTE property

This required property is a Boolean value that specifies whether interface tables are
available in the local database or in a remote database. A value of 0 (false)
indicates that the interface tables are available in the local database in the system
schema. You do not have to enter any other handler properties. In the predefined
MAXIFACETABLE handler, the value of this property is 0. A value of 1 (true)
indicates the interface tables are in a remote database. If necessary, specify values
for all the handler properties.

DRIVER property

This property specifies the JDBC driver to connect to a remote database that
contains the interface tables. This property applies only when the value of the
ISREMOTE property is 1.

URL property

This property specifies the JDBC URL and applies only when the value of the
ISREMOTE property is 1. The following example contains the location, port
number, and database name:

jdbc:db2://hostname:port/maximodb

30 Integrating Data With External Applications

USERNAME and PASSWORD properties

If access to the remote database requires a user name and password, these
properties specify those values. These properties apply only when the value of the
ISREMOTE property is 1.

JMS handler:

The JMS handler delivers outbound integration messages to a JMS-compliant
messaging system that supports a JMS queue or topic.

The messaging models have the following characteristics:
v Point-to-point messaging (one to one): A sender generates messages and places

them in a queue. Only one receiver can obtain the message from the queue.
v Publish-subscribe (one to many): A publisher generates messages and places

them in a topic. Multiple subscribers can retrieve messages from the topic.

The messaging system represents a queue or topic that is available on the local
application server, on a remote application server, or on a remote dedicated
queuing system such as IBM® WebSphere MQ. To use this handler, enable the
messaging systems by using JMS. The messaging system is distinct from the
standard internal queues that reside on the local application server.

CONFACTORYJNDINAME property

This required property specifies a Java object that is used to create connections to a
JMS provider. Before the system can connect to a queue or topic, it must obtain a
reference to a connection factory.

DESTINATIONTYPE property

This optional property specifies the JMS destination type; queue or topic. The
following table lists the DESTINATIONTYPE options and their associated values.

Destination Value

Topic javax.jms.Topic

Queue javax.jms.Queue

DESTJNDINAME property

This required property specifies the name by which the JMS queue or topic is
registered in the application server Java Naming and Directory Interface (JNDI)
tree.

CONTEXTFACTORY property

This property specifies the initial context factory class name. The property is not
required when the JMS handler is communicating with a JMS provider that shares
the same initial context factory as the application server of the handler. When the
handler and the JMS provider share a WebSphere Application Server, they share
the initial context factory class. The context property value is required when the
handler and the JMS provider do not share a WebSphere Application Server.

Integrating data with external applications 31

ISCOMPRESS property

This required property specifies whether the message is compressed before it is
placed it into a queue or topic. Compression is an optimization technique that
delivers smaller messages to a queue or topic. The following table lists the
ISCOMPRESS options and their associated values.

Option Value

Do not compress data 0

Compress data 1

Compressed messages must be extracted after they are received. Extract the
messages by creating the appropriate JMS receiver or subscriber component and
placing Java decompression logic within the receiver or subscriber. Use the
standard Java Inflater() class that is part of the java.util.zip package. The default
compression uses the standard Java Deflator() class.

ISTEXT property

This optional property specifies whether the JMS handler will deliver messages to
another queue in text format.

Option Value

Deliver messages in default (bytes) format 0

Deliver messages in text format 1

JMSEXIT property

In a multitenancy environment, customization by using Java classes can be
implemented only by the system provider and may not be supported in your
environment.

This optional property is used for customization and specifies the fully qualified
name of a Java class that runs the JMSExit interface. The Java class must
implement the getMessageProperties() method that is defined in the JMSExit
interface. The Java class must be in the class path for the application server or in
the application EAR file.

You can use this option change or add properties in the JMS message. If this
property does not contain a value, the header attributes for the message are not
changed when the message is delivered to the external queue or topic.

PROVIDERURL property

This required property specifies a local or remote URL where the JMS provider can
be accessed. If the target JMS provider is local to the application server of the
handler, the property is not required. The following property is an example of a
PROVIDERURL value on a WebSphere Application Server:
corbaloc:iiop:hostname:iiopport

32 Integrating Data With External Applications

PROVIDERUSER and PROVIDERPASWORD properties

These properties are used for the JMS provider authentication. The properties map
to the connectionFactory.createConnection(provideruser,providerpassword) API in
JMS.

USERNAME and PASSWORD properties

These properties correspond to the java.naming.security.principal (USERNAME)
and java.naming.security.credentials (PASSWORD) properties used for creating the
InitialContext object.

Web service handler:

The web service handler is a Java client that can invoke any document-literal web
service that is WS-I BP 1.1 compliant. The outbound integration message forms the
payload (SOAP body) and the handler provides the SOAP headers and envelope.
This handler operates independent of the container.

This web service handler supports an early implementation of web services and is
provided to maintain backwards compatability with existing web services. If you
are implementing new web services, configure them to use the web service handler
for JAX-WS.

MEP property

This optional property specifies the message exchange pattern for the web service.
The property supports the following values. If you do not provide a value, the
default value, the sendreceive value is used.

Value Web Service Operation Type

sendreceive Request and response

sendrobust Request with void or fault response

fireandforget Request only, no response, or fault

ENDPOINTURL property

This required property specifies a valid web service URL on which to invoke a
web service. You can use the WSEXIT class to override the value specified via the
user interface just before the web service is invoked.

SERVICENAME property

This required property specifies the name of the web service deployed in the URL.

SOAPACTION property

This optional property specifies the value of the SOAPAction HTTP header to be
used when invoking the web service. The default value is an empty string. To set a
value for the property, view the WSDL file for a web service to determine the
action and specify this value. You can use the WSEXIT class to override the value
specified in the user interface before you invoke the web service.

Integrating data with external applications 33

SOAPVERSION property

This optional property specifies the version of the SOAP specification used during
web service call. Valid values are SOAP11 and SOAP12.

HTTPVERSION property

This optional property specifies the version of the HTTP protocol for web service
invocations. The valid values are HTTP/1.0 and HTTP/1.1. If you do not provide a
value, the system uses the default value, HTTP/1.1.

HTTPCONNTIMEOUT property

This optional property specifies the connection timeout value in milliseconds. The
default value for this property is 60000 milliseconds.

HTTPREADTIMEOUT property

This optional property specifies the read timeout value in milliseconds. The default
value for this property is 60000 milliseconds.

USERNAME and PASSWORD properties

If the specified web service is secured (if HTTP basic authentication is enabled),
specify a user name and password.

WSEXIT property

In a multitenancy environment, customization by using Java classes can be
implemented only by the system provider and may not be supported in your
environment.

This optional property is used for customization. It specifies the fully qualified
name of a custom Java class that implements the psdi.iface.router.WSExit interface.
The property defines the following methods:

The responseOk() method is called after a successful invocation of the external web
service.
public void responseError(Exception e) throws MXException

If an error occurs when the web service is called, the responseError() method is
called with the originating exception as a parameter.

The default implementation of the WSExit interface is
psdi.iface.router.DefaultWSExit.

Web service handler (JAX-WS):

The WEBSERVICE-JAX-WS handler is a Java client that can invoke any
document-literal web service that is WS-I BP 1.1 compliant. The outbound
integration message forms the payload (SOAP body) and the handler provides the
SOAP headers and envelope.

This web service handler supports the current implementation of web services. If
you are implementing new web services, configure them to use this web service
handler.

34 Integrating Data With External Applications

MEP property

This optional property specifies the message exchange pattern for the web service.
The property supports the following values. If you do not provide a value, the
default sendreceive value is used.

Value Web Service Operation Type

sendreceive Request and response

sendrobust Request with void or fault response

fireandforget Request only, no response, or fault

ENABLEAPPCONTEXT property

Set this property to 1 (true) when implementing support for WS-* policies.

ENDPOINTURL property

This required property specifies a valid web service URL on which to invoke a
web service. You can use the WSEXIT class to override the value specified via the
user interface just before the web service is invoked.

SERVICENAME property

This required property specifies the name of the target web service that the
handler invokes.

SOAPACTION property

This optional property specifies the value of the SOAPAction HTTP header to be
used when invoking the web service. The default value is an empty string. To set a
value for the property, view the WSDL file for a web service to determine the
action and specify this value. You can use the WSEXIT class to override the value
specified in the user interface before you invoke the web service.

SOAPVERSION property

This optional property specifies the version of the SOAP specification used during
web service call. Valid values are SOAP11 and SOAP12.

HTTPCONNTIMEOUT property

This optional property specifies the connection timeout value in milliseconds. The
default value for this property is 60000 milliseconds.

HTTPREADTIMEOUT property

This optional property specifies the read timeout value in milliseconds. The default
value for this property is 60000 milliseconds.

HTTPHEADER property

This optional property can add a comma-separated list of names and values to the
header section of HTTP messages. The list includes name and value information in
the format of Headername1:Headervalue1, Headername2:Headervalue2. If no value

Integrating data with external applications 35

is provided in the property, custom code can inject the values into the transaction
context during invocation channel processing.

USERNAME and PASSWORD properties

If the specified web service is secured (if HTTP basic authentication is enabled),
specify a user name and password.

WSEXIT property

In a multitenancy environment, customization by using Java classes can be
implemented only by the system provider and may not be supported in your
environment.

This optional property is used for customization. It specifies the fully qualified
name of a custom Java class that implements the psdi.iface.router.WSExit interface.
The property defines the following methods:

The responseOk() method is called after a successful invocation of the external web
service.
public void responseError(Exception e) throws MXException

If an error occurs when the web service is called, the responseError() method is
called with the originating exception as a parameter.

The default implementation of the WSExit interface is
psdi.iface.router.DefaultWSExit.

CFGXMLPATH property

This property is obsolete. Do not use it.

XML file handler:

The XML file handler is a Java component that writes an outbound integration
message into a file in XML format.

FILEDIR property

This optional property specifies where the handler creates the XML files. The
default value is mxe.int.globaldir/xmlfiles. The file location must be accessible by
the JMS CRON task for the outbound queue for publish channel messages. For
Invocation Channel messages, the file location must be accessible by any Maximo
Asset Management servers where an invocation channel can be initiated.

PRETTYPRINT property

This required property specifies whether the handler formats the XML file. The
valid values are 0 and 1. A value of 1 prompts the handler to pretty print format
the xml file. Publish channel, invocation channel, and invocation API file names
have the following formats:
externalsystemname_publishchannelname_uniqueidentifier.xml

invocationchannelname_uniqueidentifier.xml

v externalsystemname is the identifier of the system (the value of
MAXEXTSYSTEM.EXTSYSNAME).

36 Integrating Data With External Applications

v publishchannelname is the name of the publish channel.
v uniqueidentifier is a number based on current system time.

For example, the file name MX_MXASSETInterface_10971102668641398.xml
indicates that the file was generated to send data to the external system EXTSYS1.
The file name also indicates that the file contains the MXASSETInterface publish
channel.

Command line handler:

The CMDLINE handler takes a command and an endpoint as input. The
CMDLINE handler uses the SSH protocol to run the command on the target
system and return the results.

A metadata parameter is passed during a system invocation when the handler is
called. The parameter is a map that contains the name of the endpoint that
represents the target system. The caller can target any system at run time and pass
the endpoint to the command handler. The caller uses whatever configuration the
endpoint has at the time of the invocation.

CMDLINE handler properties

The CMDLINE handler has the following properties:
v CMDTIMEOUT – The timeout value for command execution
v CONNTIMEOUT – The timeout value for the connection
v USERNAME – The user name for the connection
v PASSWORD – The password for corresponding user name
v HOST – The host name of target where command is run
v PORTNO – The port number of target where the command is run
v IGNORESETUPERR – A boolean value that indicates whether to ignore an error

running the setup command
v RETRYINTERVAL – The time to wait between retrying a command
v MAXRETRY – The number of attempts to run a command before returning an

exception
v SSHEXIT – The Java exit class that can be implemented to customize processing

of the handler

Command data parameters

The data parameter is a byte array representation of an XML document. The data
parameter contains the following information:
v The tags that correspond to the setup command
v The working directory
v The command to run
v Any substitution parameters

Available tags

The following tags are available:
v CLWORKINGDIR – A directory to change (cd) to on the remote system before

the command is run.

Integrating data with external applications 37

v CLSSETUPCMD – A setup command to be run before the main command. Use
this tag for any environmental setup that must occur on the remote system
before the main command is issued.

v CLCMDPATTERN - A string that defines the pattern of the command to be run.
The format of this pattern is similar to the java.text.MessageFormat class. An
example is ls -l {0}, where {0} represents a parameter that is substituted.

v CLSUB0 - The value to substitute into positions that are marked by {0} in the
CLCMDPATTERN.

v CLSUB1- The value to substitute into positions that are marked by {1} in the
CLCMDPATTERN.

v CLSUBn - The value to substitute into positions that are marked by {n} in the
CLCMDPATTERN. A CLSUBn tag must correspond to each substitution position
in the CLCMDPATTERN tag.

Command results

The return byte array representation of an XML document contains the results of
the command. The XML document contains tags that correspond to the return
value, STDOUT and STDERR.

The following tags are available:
v CLRETURNCODE – The return code from the remote command.
v CLRESPONSEOUT – The data that is returned by the remote command in

STDOUT tag.
v CLRESPONSEERR – The data that is returned by the remote command in

STDERR tag.

Integration web services
External systems can use integration framework web services to send messages or
queries to the Maximo database. You can use an integration framework service as
the source for a web service and then deploy this service to communicate with
external systems.

Web service sources
The source of a web service can be an object structure service, a standard service,
or an enterprise service.

Object structure services

You can create an object structure web service from a predefined or a user-defined
object structure service. Object structure web services support create, update,
delete, sync, and query operations. Create and query operations also support
responses. The response to the create operation can be based on the primary or
alternate key of the primary object that is defined in the object structure. The
response to the query operation is provided in the XML schema format of the
object structure.

Standard services

You can create a standard web service from methods that are annotated in
application services. To use methods as web services, annotated methods, such as
the ChangeStatus method, must exist within an application. A single standard web
service is created for each application service and all annotated methods within the
service are the web service operations. The input and output parameters of the

38 Integrating Data With External Applications

methods are associated with the input and output parameters for the standard web
service.

Enterprise services

You can create an enterprise web service from a predefined or a user-defined
enterprise service. Enterprise web services support additional exit processing,
business rules, and transformations. A service exists for each operation that is
contained in an enterprise service record (one service per operation). With the exit
processing layer, you can map an external schema XML to the object structure
XML for both the invocation and the response. Enterprise web services provide
response content for the create and query operations that are processed in the
queue. The enterprise service definition has a ProcessResponse flag that indicates
whether the service supports a response.

JMS queue settings for enterprise web services:

Enterprise web services can use the Java Message Service (JMS) queue to process
XML messages, or you can specify that the service bypasses the JMS queue.

JMS queue-based processing provides asynchronous message processing. For
enterprise services that support synchronous processes, you must specify
non-queue-based message processing. The integration framework processes XML
messages from external applications based on the queue settings that are defined
for the enterprise web service:

Queue-based message processing
A queue-based enterprise web service processes XML messages and writes
these messages into the configured, inbound JMS queue. When the
message is moved into the JMS queue, the external application is released
from the invocation. The integration framework processes the messages
and saves them in the Maximo database.

An enterprise web service cannot use the JMS queue if the service includes
create or query operations that require a response to the external
application.

Non-queue-based message processing
A non-queue-based enterprise web service processes messages from the
integration framework to the object processing layer and saves information,
when applicable, to the Maximo database. After the enterprise web service
completes message processing, the integration framework sends a response
to the external application. You must specify non-queue-based processing if
the enterprise web service supports query or create operations that require
a response to the external application.

Web service deployment options
After you create a web service, you have a choice of deployment options. If you
deploy a web service to the product web service container, the deployment is
automatic. If you deploy a web service to an application server web service
container, the deployment is manual.

You can deploy web services to one container type only. You cannot deploy some
web services to a product web service container and deploy other web services to
an application server web service container. Deployment to the web service
container for the product is the quicker option, because the deployment is
automatic. This type of deployment does not require redeployment of the Maximo
EAR files or a restart of the application server.

Integrating data with external applications 39

To invoke a web service on the application server, you must deploy the service to
the application server web service container. Integration with an application server
can provide a web service with access to additional services, such as enhanced
security policies. If you choose this type of deployment, the information is added
to the deplmodule.dar file. You must then add this file to the application server
deployment directory, rebuild the EAR files, and restart the application server.

You can convert existing web services that are deployed to the product web service
container to redeploy them to the application server web service container.

Web service deployment actions
When you deploy a web service, a number of events occur, including the
generation of the XML schema and the web services description language (WSDL)
file for the web service.

When you deploy a web service, the following events occur:
v The XML schema is made available for a new web service or the schema is

regenerated for an existing web service.
v The WSDL file is made available for the service interface.
v The web service is deployed for the selected service.
v If Universal Description Discovery and Integration (UDDI) registry properties

are configured, the web service is registered in the UDDI registry.

The deployed web service is available at the following URL:
http://hostname:port/meaweb/services/web service name

v host:port/meaweb is the value of the integration web application URL property.
v web service name is the name of the service for which the web service is

deployed.

The list of deployed web services is available in the Web Services Library
application.

Schema generation
You can generate the schema and view the XML for any web service in the Web
Services Library application. You can also regenerate the schema to ensure that the
schema is updated to reflect any changes that you make to the service.

A web service data structure is based on its associated object structure (for object
structure services and enterprise services) or method signature (for standard web
services). The web service data structure is provided in a standard XML
representation, as a schema. This schema is used to create the WSDL file for the
service.

If you change the data structure that is associated with a web service, regenerate
the schema to update its schema and the WSDL file. The following changes to the
data dictionary change the object structure:
v Adding new fields to a table
v Changing the type of a field
v Dropping fields from a table
v Changing a field from optional to required

The XML does not contain fields that are marked for exclusion in the object
structure.

40 Integrating Data With External Applications

Before you deploy a web service, you must generate the schema to provide
updated schema information to the WSDL file. When you generate a schema, input
elements are displayed in the XML Data window and output elements are
displayed in the Response XML window.

You can view the generated schema at the following URLs:
v For enterprise service and object structure schemas, use the URL

http://localhost:port/meaweb/schema/service/MXSRService.xsd, where MXSR
is the object structure name that is associated with the service.

v For standard service schemas, use the URL http://localhost:port/meaweb/
schema/service/ss/ITEMService.xsd, where ITEM is the name of the service.

If you set the mxe.int.resolveschema global property to true in the System
Properties application, all include files are resolved. The entire schema content
resides in a single file.

Generation of a Web Services Description Language file
A WSDL file is generated during the deployment of a web service. The WSDL file
describes the web service, provides its location, and specifies the operations that
the service makes available.

The WSDL file specifies the XML structure of the input and output messages for
the operation, based on the XML schema. The file also specifies the URL for the
web service, and the operations that the web service makes available.

A client program needs the schema definitions and WSDL file to generate client
stubs. The client program uses a programming language, such as Java or C#, to call
the web service.

You can view a generated WSDL file in a browser at http://localhost:port/
meaweb/wsdl/service_name?wsdl, where service_name is the name of the service,
such as MXASSET.

UDDI registration
You can register deployed web services in a UDDI registry. UDDI is an XML-based
registry for publishing and locating WSDL files that describe web service
applications.

You can register deployed web services in a UDDI registry by configuring the
following global properties in the System Properties application:

System property Description

mxe.int.uddipuburl UDDI registry publish URL

mxe.int.uddiinqurl UDDI registry inquiry URL

mxe.int.uddiname UDDI registry user ID

mxe.int.uddipassword UDDI registry password

If you specify values for the publish URL property and the inquiry URL property,
the web service is registered in the UDDI registry. To bypass UDDI registration, do
not specify any values for these properties. Only the model for the WSDL file is
registered in the UDDI registry. The businessEntity, businessService, and
bindingTemplate values are not registered. The UDDI registration entry contains
the URL to the WSDL file.

Integrating data with external applications 41

Creating and deploying web services
You can create a web service based on any object structure service, standard
service, or enterprise service that is defined for the system. You then deploy the
web service to the product web service container or to the application web service
container.

Creating a web service:

When you create a web service, an external system can send web-based messages
and queries to the associated service without configuring additional
communication protocols or services.

Before you begin

Perform the following checks to ensure that the service you want to use is
available to create a web service:
v For an object structure service, verify that the Consumed By field is set to

INTEGRATION in the Object Structures application.
v For a standard service, ensure that a method is annotated in the application

service for each operation that you want to use in the web service. Only those
methods that are properly annotated are accessible in the Web Services Library
application

v For an enterprise service, ensure that the service is associated with an external
application in the External Systems application.

Procedure

1. In the Web Services Library application, select the appropriate Create Web
Service action.

2. Choose the service to use by selecting the corresponding Source Name check
box.

3. Optional: In the Name field, specify an identifier for the web service.
4. For a web service that is based on an enterprise service, specify whether you

want the web service to be queue-based or to bypass the JMS queue.
5. Click Create.

What to do next

You must deploy the web service before you can use it to process inbound
messages and queries. You can also generate the schema and view the XML
structures of any selected web service.

Deploying a web service to the product web service container:

After you create a web service, you must deploy it before it can start processing
XML messages. When you deploy a web service to the product web service
container, the deployment process occurs automatically and does not require a
server restart.

Procedure

1. In the Web Services Library application, select the web service that you want to
deploy.

2. Select the Deploy to Product Web Service Container > Deploy Web Service
action.

42 Integrating Data With External Applications

3. Click OK.

Deploying a web service to the application server web service container:

A deployment file is generated when you deploy a web service to the application
server web service container. You must rebuild the Maximo EAR file to include the
deployment file and restart the application server to activate the web service.

About this task

The deplmodule.dar deployment file is in the directory that is specified by the
mxe.int.globaldir system property.

Procedure

1. In the Web Services Library application, select the web service that you want to
deploy.

2. Select the Deploy to Application Server Web Service Container > Generate
Deployment File Entries action. This action generates an entry in the
deployment file, deplmodule.dar.

3. Click OK.
4. Copy the deplmodule.dar file from the integration framework global directory

to the product deployment directory.
5. In the deployment directory, run the buildmaximoear.cmd file.
6. In the administrative console for the application server, deploy all web services

in the deplmodule.dar file:
a. Stop the application server.
b. Redeploy the maximo.ear file.
c. Restart the application server.

Updating schema information:

If you change the data structure of an integration service, update the schema
information to the WSDL file to update the web service. If you do not regenerate
the schema, the schema used by the web service can differ from the structure
defined for the associated integration service.

Procedure

1. After modifying the data structure of a web service, click Generate Schema,
WSDL, and View XML. If you do not regenerate the schema, the web service
is not aware of changes that you make.

2. For web services that are deployed to the application server web service
container, you can automate schema updates in the System Properties
application.
a. Set the value of the mxe.int.containerdeploy property to 1 to deploy web

services to the application server web service container.
b. Set the value of the mxe.int.wsdlincludeschema property to 1 to ensure that

schema information is included as part of WSDL files.
c. Set the value of the mxe.int.resolveschema property to 1 to ensure that the

system resolves all included fields into a single file.
d. Set the value of the mxe.int.wsdlcurrentschema property to 1 to provide

up-to-date schema content as part of a WSDL file.

Integrating data with external applications 43

Web service interactions overview
An interaction can start a web service and send data to it from an application. The
interaction can then display data returned from the web service and save this data
to the application database.

To implement interactions requires knowledge of:
v XML schemas
v Web services
v The integration framework
v Customizing applications and application user interfaces

An interaction can manage the following processes:
v Prepare a request for a web service.
v Invoke a web service from an application.
v Retrieve results from the web service in the form of a response.
v Display the results in an application.
v Optionally, apply the response data into the system database.
v Report any errors that occur during the request or response processes.

Two applications are provided to help you create and manage interactions:
v Create and configure interactions in the Create Interaction application.
v Review, modify, and delete interactions in the Interactions application.

After you create an interaction, users can perform the following tasks from the
application user interface:
v Start the interaction.
v View and, if configured, change the parameters of the request to the web service.
v Invoke the web service by sending the request.
v Optionally, view data received from the web service and commit this data to the

database.

Creating interactions:

The Create Interactions wizard application guides you through all the steps
required to create and configure an interaction. After you complete the wizard
process and test the interaction, users can start working with it immediately with
no requirement for additional configuration or deployment.

Before you begin

Before you run the Create Interactions application, ensure that you have all the
information required for the configuration. During the process, you must specify
the web service, define the structure of messages, and map the data between the
application and the web service.

A logging tool is provided to log configuration activity and maintain a log file of
the items that are configured. To generate a detailed log of the configuration, in the
Logging application, set the interaction logger to DEBUG mode.

44 Integrating Data With External Applications

Procedure

1. To configure the web service for the interaction, in step 1 of the process:
a. Specify the URL for the WSDL file for the web service.
b. When the screen refreshes with information from the WSDL file, specify one

port for the interaction.
c. Specify one operation for the interaction and check Process Response if you

want the web service to return data to the application during the
interaction.

2. Review the contents of the request to the web service in step 2, and modify the
request object structure by removing any unnecessary elements.

3. Optional: Review the contents of the response from the web service in step 3,
and modify the response object structure by removing any unnecessary
elements. This step is included only if you checked the Process Response
option in step 1.

4. To configure the application for the interactions, in step 4 of the process:
a. Specify the application that uses the interaction.
b. Configure the application binding for the interaction, including the main

object, the signature option, the interaction mode, and the user interface
components.

c. Specify the security groups that are authorized to initiate the interaction.
5. Configure the Request tab of the Interactions window in step 5, including

specifying the fields that users can see and whether they can edit them.
6. Optional: Configure the Response tab of the Interactions window in step 6,

including specifying the fields that users can see and whether they can edit
them. This step is included only if you checked the Process Response option in
step 1.

7. You can map information from the application to the web service in step 7.
Mapped information is entered automatically into the request when users start
the interaction.

8. Optional: You can map information from the web service to the application in
step 8. If you check the Commit Response option, the mapped information is
saved automatically to the database.

9. Review the configurations in the final step of the process.

What to do next

To monitor the time it takes to execute the interaction, in the Logging application,
set the integration logger to either INFO mode or DEBUG mode.

You can view the interaction and modify mapping information in the Interactions
application. If you intend to modify an interaction, select the Deactivate
Interaction action before you make any changes and reactivate it after you
complete the modification.

External systems
You can configure the external system that the integration framework
communicates with. You can configure external systems for external applications
within or outside your enterprise. If you copy a predefined external system, it
copies the channels and services that are configured for it. You can configure a new
external system to use existing JMS queues.

Integrating data with external applications 45

Configuring an external system
To configure an external system, identify the external system and associate it with
the channel or service used to process transactions. You must also configure the
JMS queues that the external system uses and you can configure integration
controls to support customization with processing rules.

Creating an external system:

You create an external system to exchange data with external applications. When
you create an external system, the application copies the integration controls that
are defined for the corresponding publish channels and enterprise services. You
then can specify default control values that apply to a particular external system.

Before you begin

Before you create an external system, define the queues and endpoint that the
external system uses.

Procedure

1. In the External Systems application, click New External System.
2. In the System field, specify an external system identifier.
3. Optional: If the external system sends outbound messages, complete the

following steps:
a. Specify a value in the Outbound Sequential Queue field.
b. Specify a value in the End Point field.

4. Optional: If the external system receives inbound messages, complete the
following steps:
a. Specify a value in the Inbound Sequential Queue field.
b. Specify a value in the Inbound Continuous Queue field.

5. Click Save External System.

What to do next

You must enable at least one publish channel or enterprise service before message
processing can occur.

Enabling an external system:

You can enable an external system after you configure the external system record
and when you are ready to begin integration framework message processing. You
also can disable an external system to stop all inbound and outbound message
processing.

Before you begin

You must enable at least one publish channel or enterprise service before any
message processing can occur.

About this task

When you disable an external system, the integration framework does not accept
inbound messages or send outbound messages. Additionally, you cannot use the
external system data export and data import features. Only messages that are in
the queues are processed.

46 Integrating Data With External Applications

Procedure

1. In the External Systems application, select the system that you want to update.
2. Specify whether you want the external system to be enabled or disabled:

Option Enabled

Enabled Selected

Disabled Cleared

3. Click Save External System.

Enabling a publish channel:

You must enable a publish channel that is associated to an external system before it
can be used to publish event-based messages to an external system. By default, the
publish channel records that are associated with an external system are disabled. A
disabled publish channel prevents the external system from processing outbound
integration framework messages.

Procedure

1. In the External Systems application, select the system that you want to update.
2. On the Publish Channels tab, specify whether you want the publish channel to

be enabled or disabled.

Option Enabled

Enabled Selected

Disabled Cleared

3. Click Save External System.

Associating a publish channel with an external system:

You can associate a publish channel with an external system to synchronize the
asset management object data with the external application data. The channels that
you create and associate to the external system contain the outbound message
processing logic.

About this task

You can define the endpoint that the channel uses. If you do not define an
endpoint at the publish channel level, data is moved to the endpoint location that
is defined at the external system level. You also can enable the associated publish
channel when you are ready to perform outbound integration framework message
processing.

Procedure

1. In the External Systems application, select the external system that you want to
update.

2. On the Publish Channels tab, click New Row.
3. In the Publish Channel field, enter a value.
4. Optional: In the End Point field, specify a value.
5. Optional: Specify whether you want the publish channel to be enabled or

disabled:

Integrating data with external applications 47

Option Enabled

Enabled Selected

Disabled Cleared

6. Click Save External System.

Selecting publish channels for the external system:

You can associate multiple publish channels with an external system to
synchronize the asset management object data with the external application data.
The channels that you create and associate to the external system contain the
outbound message processing logic.

Procedure

1. In the External Systems application, select the system that you want to update.
2. On the Publish Channels tab, click Select Channel.
3. Choose one or more publish channels by selecting the corresponding Publish

Channel check boxes.
4. Click OK.
5. Click Save External System.

What to do next

You can define the endpoints that the channels use. If you do not define an
endpoint at the publish channel level, data is moved to the endpoint location that
is defined at the external system level. You must enable the associated publish
channels before you can perform integration framework message processing.

Adding an endpoint to a publish channel:

You can define the endpoint that a publish channel uses to determine where the
outbound data is published. Endpoints identify a target location and the transport
mechanism for outbound data publication. If you do not define an endpoint at the
publish channel level, data is moved to the endpoint location that is defined at the
external system level.

Before you begin

You must associate a publish channel to an external system.

Procedure

1. In the External Systems application, select the external system that you want to
update.

2. On the Publish Channels tab, select the publish channel for which you want to
add an endpoint.

3. In the End Point field, specify a value.
4. Click Save External System.

What to do next

You can enable the associated publish channel when you are ready to perform
outbound integration framework message processing.

48 Integrating Data With External Applications

Importing file-based data:

You can use the data import feature to load data from either XML or flat, delimited
files, to update the Maximo database. You can preview and validate the data prior
to loading it and committing it to the database. You can choose to manage errors
with the Message Reprocessing application or by extracting errors to a file format
that is the same as the imported file format.

Before you begin

Before data can be imported, if you plan to import data from a flat file, such as a
.csv file, the enterprise service object structure must support flat file structures.
Ensure that the Support Flat File Structure check box is selected on the associated
object structure record in the Object Structures application. You also must enable
both the external system and the enterprise service before you can import data.

About this task

The data that you import must be in a delimited flat file, such as comma
separated, or an XML file format. The data import process can use a predefined or
user-defined enterprise service.

Procedure

1. In the External Systems application, display the external system that contains
the enterprise service from which you want to import data.

2. On the Enterprise Services tab, select the enterprise service from which you
want to import data.

3. Click Data Import.
4. Optional: Select the Import Preview check box to examine the data before

importing and committing the data to the database. Use the preview option to
sample data records. This feature is not intended to support a large file
containing hundreds of records. Processing synchronously processes the file to
the business objects and returns any error messages encountered, without
committing any updates to the database.

5. Specify the type of file that you want to use for the file import.

Option Description

XML File Imported data is in XML format.

Flat File Imported data is in a delimited flat file. If
necessary, modify the Delimiter and Text
Qualifier values.

6. In the Specify Import File field, enter the file name path the imported file uses
for identification and storage.

7. Select the File-based Error Management check box if you want to manage any
errors you encounter through a file in the same format as the file being
imported. This option is an alternative to managing errors with the Message
Reprocessing application

8. Click OK to begin the import data process.

What to do next

When the data import is executed, the file that is selected for import is formed into
multiple messages and dropped into the inbound queue that is configured for the

Integrating data with external applications 49

enterprise service and its corresponding external system. The messages are then
processed from the inbound queue to the application objects for updating. The
processing of messages from an inbound queue requires the enablement of the JMS
cron task when the sequential queue is used or the enablement of Message Driven
Beans for the continuous queue. If errors occur when processing a file, you can
manage and view the data import messages that are flagged with an error in the
Message Reprocessing application.

Enabling an enterprise service:

You must enable an enterprise service that is associated to an external system
before it can be used to receive inbound external application data. By default, the
enterprise service records that are associated with an external system are disabled.
A disabled enterprise service prevents the external system from processing
inbound external application messages.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. On the Enterprise Services tab, specify whether you want the enterprise service
to be enabled or disabled.

Option Enabled

Enabled Selected

Disabled Cleared

3. Click Save External System.

Associating an enterprise service with an external system:

You can associate an enterprise service with an external system to synchronize
inbound external application data with asset management objects. The services that
you create and associate to the external system contain the inbound message
processing logic.

About this task

You can specify whether the associated enterprise services receive data from the
sequential or continuous queue. You also can enable the associated enterprise
service when you are ready to perform inbound integration framework message
processing.

Procedure

1. In the Enterprise Systems application, display the system that you want to
update.

2. On the Enterprise Services tab, click New Row.
3. In the Enterprise Service field, enter a value.
4. Optional: Specify whether you want the enterprise service to be enabled or

disabled:

Option Enabled

Enabled Selected

Disabled Cleared

50 Integrating Data With External Applications

5. Specify whether you want the service messages to receive data from the
continuous or sequential queue.

Option Use Continuous Queue

Continuous queue Selected

Sequential queue Cleared

6. Click Save External System.

Selecting enterprise services for the external system:

You can associate multiple enterprise services with an external system to
synchronize inbound external application data with asset management objects. The
services that you create and associate to the external system contain the inbound
message processing logic.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. On the Enterprise Services tab, click Select Service.
3. Choose one or more enterprise services by selecting the corresponding

Enterprise Service check boxes.
4. Click OK.
5. Click Save External System.

What to do next

You must enable the associated enterprise services before you can perform
integration framework message processing. You also can specify whether the
associated enterprise services receive data from the sequential or continuous
queues.

Selecting an enterprise service queue type:

You can specify whether the enterprise service that you associate to the external
system receives data from the continuous or sequential queue. The queue selection
you make for the enterprise service determines how the Java Message Service
(JMS) queue processes inbound messages.

Before you begin

You must associate an enterprise service to an external system.

About this task

The continuous queue continues to process messages that are in the queue even
when message processing results in an error. Conversely, the sequential queue
stops processing messages that are in the queue until the processing error is
cleared. A sequential queue also processes messages on a strict first-in-first-out
basis.

Procedure

1. In the External Systems application, select the external system that you want to
update.

Integrating data with external applications 51

2. On the Enterprise Services tab, select the enterprise service for which you want
to select a queue.

3. Specify whether you want the service messages to receive data from the
continuous or sequential queue.

Option Use Continuous Queue

Continuous queue Selected

Sequential queue Cleared

4. Click Save External System.

What to do next

You can enable the associated enterprise service when you are ready to perform
inbound integration framework message processing.

Exporting file-based data:

With the data export feature, you can perform a bulk export of message data from
a file to an external system. You can initiate the export process for each publish
channel that is associated to an external system.

Before you begin

In a multitenancy environment, you can use the data export feature only if the
system provider provides you with access to a file server that is accessible by the
application server. You must then configure a file-based endpoint to point to the
location of this file server.

You must enable both the external system and the publish channel before you can
export data. The data for export must either be in an XML file format that adheres
to the object structure schema or in a delimited flat file, such as comma separated,
that is a flattened version of the object structure schema format.

About this task

The optional SQL query that you enter in the Export Condition field, can affect the
size of the exported XML message. You can filter the content to limit the amount of
data that is being exported. The export process performs the standard outbound
processing on the result set of the query for the selected publish channel.

Procedure

1. In the External Systems application, click the Publish Channels tab and select
the publish channel that you want to export.

2. In the End Point field, specify a file-based endpoint handler, for either XML file
or flat file format.

3. Click Data Export.
4. Optional: Enter a SQL query in the Export Condition field. The query must be

against the primary or top-level object in the publish channel object structure.
5. Optional: Specify an integer value in the Export Count field to limit the

number of records that are contained in the exported file. If the result of the
query contains more records than the number you specify, those records are not
included in the exported file.

6. Click OK to begin the data export process.

52 Integrating Data With External Applications

What to do next

When the data export is executed, the selected data is formed into a message and
dropped into the outbound queue that is configured for the publish channel and
its corresponding external system. The message is then processed from the
outbound queue to the configured endpoint. If an error occurs when delivering a
message to the endpoint, you can manage and view the data export messages that
are flagged with an error in the Message Reprocessing application.

Adding queues to an external system:

You can use Java Message Service (JMS) queues to exchange enterprise service and
publish channel data with an external application. When messages are received or
sent, they are written to the JMS queue. These messages remain in the queues until
they are successfully processed or deleted.

Before you begin

Before you can add a queue to an external system, you must create the queue on
the application server. If you add a sequential queue, you must set up a cron task
to periodically poll the queue for messages.

About this task

Each external system can have its own inbound and outbound queues, or you can
configure multiple systems to share queues. You can either add your own
user-defined message queues, or modify the existing queues when the predefined
inbound and outbound message queues do not meet your needs.

Procedure

1. In the External Systems application, select the system for which you want to
add a JMS queue.

2. Select the Add/Modify Queues action.
3. Click New Row.
4. Enter values in the following fields:

Option Description

Queue JNDI Name The name of the JMS queue.

Queue Connection Factory The connection factory that is used for
accessing the queue. The default value is
jms/mro/int/queues/sqin.

Maximum Try Count The number of times a message is processed
before it is written to the error log and an
e-mail notification is sent to the system
administrator.

5. Optional: Enter values in the following fields:

Option Description

Initial Context Factory The class used to connect to the JMS server.

Provider URL The URL of the JMS server.

User ID The user ID that is used to access the new
queue.

Integrating data with external applications 53

Option Description

Password The password that is use to access the
queue.

E-mail Address The e-mail address of a user who receives
notices when transaction errors occur in the
queue. This value is typically the e-mail
address of a system administrator.

6. Optional: If the queue delivers inbound messages and functions as a
continuous queue, clear the Sequential check box.

7. Optional: If the queue delivers outbound messages, clear the Inbound check
box.

8. Click OK.
9. On the System tab, enter values in the following fields:

v Outbound Sequential Queue

v Inbound Sequential Queue

v Inbound Continuous Queue

10. Click Save External System.

Creating interface tables:

You can create an interface table to integrate with external systems that use
database tables for data exchange. Interface tables reflect the content of publish
channel or enterprise service object structures. You must recreate existing tables
when you change the definition of the corresponding object structure.

Before you begin

You cannot recreate an interface table when unprocessed messages for that
interface table exist in the MXIN_INTER_TRANS queue table. If you do not back
up data before you recreate an interface table, the system loses the data. Ensure
that alias conflicts are resolved and the Support Flat File Structure check boxes are
selected on the associated object structure records in the Object Structures
application.

About this task

The Create Interface Table dialog box displays the interface tables that are
associated with publish channels and enterprise services that have the following
characteristics:
v Registered to the selected external system.
v Interface table name is not null.
v Corresponding object structure supports a flat file representation.

Procedure

1. In the External Systems application, select the Create Interface Tables action.
2. In the Create Interface Tables dialog box, select the interface table that you

want update and create.
3. Enter a value in the End Point field.
4. Optional: Select the Rename Existing check box to create a copy of the selected

interface table. The asset management system stores copy of the interface table
and adds a BAK suffix to its name.

54 Integrating Data With External Applications

5. Click Create.
6. Click OK to create the table or Cancel to stop the process. Depending on the

number of interface tables you are creating, this process can take some time.
7. Click OK to close the Create Interface Tables dialog box.

Working with integration controls:

If integration channels or services contain processing rules or exit classes that are
based on integration controls, the values of the integration controls can be
configured for the external system. You can configure boolean, list, and value
integration controls that you can incorporate in processing rules.

Setting up a Boolean control:

You can set up a Boolean control on an external system when you need a control
that specifies a value of true or false. You also can add specific organization-level
and site-level values to a Boolean control. An enterprise service or a publish
channel can use this Boolean control in its processing rule evaluations. The true or
false value that you assign to the control in the external system determines
whether an enterprise service or publish channel applies a processing rule.

Before you begin

The boolean value that you assign to a control must already exist in the control
definition in the Publish Channels or Enterprise Services application. If that
definition points to a domain, any organization-level or site-level values that you
assign must exist in that domain.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. Select the Set Up Integration Controls action.
3. Select the boolean control that you want to update.
4. Click New Row.
5. Perform one of the following actions:

v Enter a value in the Organization field.
v Enter a value in the Site field.

6. Specify whether you want the Boolean control to have a default value of true
or false.

Option Default True

True value Selected

False value Cleared

7. Click OK to close the Boolean Control dialog box.
8. Click OK to close the Set Up Integration Controls dialog box.

Setting up a cross-reference control:

You can set up a cross-reference control when you need a control that replaces one
value with another. A cross-reference control can map a value in the asset
management system to a value in the external system.

Integrating data with external applications 55

Before you begin

The value that you assign for translation must first exist in the control definition in
the Publish Channels or Enterprise Services application. If that definition points to
a domain, the organization-level or site-level values that you assign must exist in
that domain.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. Select the Setup Integration Controls action.
3. Select the cross-reference control that you want to update.
4. Click New Row.
5. In the Maximo Value field, enter the application value that the asset

management system converts to or from an external system value.
6. In the External Value field, enter the external system value the asset

management system converts to or from the Maximo value.
7. Click OK to close the Cross-Reference Control dialog box.
8. Click OK to close the Setup Integration Controls dialog box.

Setting up a list control:

You create a list type integration control when you need a control that contains a
list of values. You also can add specific organization-level and site-level values to a
list control. An enterprise service or publish channel can use this list control in its
processing rule evaluations. The value that you assign to the control in the external
system determines whether an enterprise service or publish channel applies a
processing rule.

Before you begin

The values that you add to a list control must already exist in the control definition
in the Publish Channels or Enterprise Services application. If that definition points
to a domain, the organization-level or site-level values that you assign must exist
in that domain.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. Select the Set Up Integration Controls action.
3. Select the list control that you want to update.
4. Click New Row.
5. In the Value field, enter a value that exists in the domain.
6. Click OK to close the List Control dialog box.
7. Click OK to close the Set Up Integration Controls dialog box.

Setting up a value control:

You can set a value type integration control on an external system when you need
a control that contains a single value. You also can add specific organization-level
and site-level values to a value control. An enterprise service or a publish channel
can use this value control in its processing rule evaluations. The value that you

56 Integrating Data With External Applications

assign to the control in the external system determines whether an enterprise
service or publish channel applies a processing rule.

Before you begin

The value that you assign first must exist in the control definition in the Publish
Channels or Enterprise Services application. If that definition points to a domain,
the organization-level or site-level values that you assign must exist in that
domain.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. Select the Set Up Integration Controls action.
3. Select the value control that you want to update.
4. Click New Row.
5. Perform one of the following actions:

v Enter a value in the Organization field.
v Enter a value in the Site field.

6. In the Value field, enter a value that exists in the domain.
7. Click OK to close the Value Control dialog box.
8. Click OK to close the Set Up Integration Controls dialog box.

Overriding values for a cross-reference control:

You can set up a cross-reference control to override values for sites and
organizations. You can choose to override the cross-reference values that were
previously defined at the enterprise service or publish channel level. The value
override can be configured according to each external system to maintain valid
asset management system and external system mappings.

Before you begin

The value that you use for translation must first exist in the cross-reference control
definition in the Publish Channels or Enterprise Services application. If that
definition points to a domain, the organization-level or site-level values that you
assign must exist in that domain.

About this task

If you use synonyms, enter the external value as the control value, not the internal
application value.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. Select the Setup Integration Controls action.
3. Select the cross-reference control that you want to update.
4. Click Override. The Override Values for Cross-Reference Control dialog boxh

displays any organization-level and site-level values that exist for the control.
5. Click New Row.
6. Perform one of the following actions:

Integrating data with external applications 57

v Enter a value in the Organization field.
v Enter a value in the Site field.

7. In the Values for Organization/Site table window, click New Row.
8. Enter the values in the Default Value and External Value fields. To use the

control as a multiplication control, enter multiple records that have the same
external value and different organization or site values.

9. Click OK to close the Override Values for Cross-Reference Control dialog box.
10. Click OK to close the Cross-Reference Control dialog box .
11. Click OK to close the Set Up Integration Controls dialog box .

Example

Five external systems are configured to exchange data with the integration
framework. Four of these external systems use the same site values, but one site
value differs. A cross-reference control that performs the translation between the
four mismatched values and the asset management system value can be
overwritten at an external system level. The value override can be configured to
translate the remaining mismatched external system site value to an asset
management system storeroom value.

A cross-reference control in an enterprise service can translate the external system
site value EX001 to an asset management system site MX001. An override
cross-reference control in external system can override the predefined EX001 value
and use an EX002 value in its value translation.

Overriding values for a list control:

You can set up a list control to override values for sites and organizations. You can
choose to override the list control values that were previously defined in the
enterprise service or publish channel level. The rule could skip the processing of
the transaction when the data field value does not match any of the overwritten
list control values.

Before you begin

The value that you assign first must exist in the control definition in the Publish
Channels or Enterprise Services application. If that definition points to a domain,
the organization-level or site-level values that you assign must exist in that
domain.

About this task

You must use a period (.) as the decimal placeholder when you enter decimals as a
control value, regardless of the locale settings of the application server or database.
Numbers to the left of the placeholder are not formatted. This format applies to
inbound and outbound data. For example, $1,738,593.64 must be 1738593.64.

Procedure

1. In the External Systems application, display the system that you want to
update.

2. Select the Set Up Integration Controls action.
3. Select the list control that you want to update.
4. Click Override. The Override Values for List Control dialog box displays any

organization-level and site-level values that exist for the control.

58 Integrating Data With External Applications

5. Click New Row.
6. Perform one of the following actions:

v Enter a value in the Organization field.
v Enter a value in the Site field.

7. In the Values for Organization/Site table window, click New Row.
8. Enter a value in the Value field. If you use synonyms, enter an external value,

not the internal application value.
9. Click OK to close the Override Values for List Control dialog box.

10. Click OK to close the Cross-Reference Control dialog box .
11. Click OK to close the Set Up Integration Controls dialog box .

Example

Work orders are sent to an external system based on their statuses. The processing
rule that is defined on an enterprise service or publish channel can check the status
of a work order against a list control that contains two status values: APPR
(approved) or COMPLETE. This list override can be configured to evaluate two
different work order status values: WAPPR (waiting on approval) or WSCH (waiting
to be scheduled). If the status of a work order does not match the overwritten list
control values, the work order transaction is not sent to the external system.

Predefined integration content
The integration framework provides predefined integration content, including
object structures, publish channels and enterprise services that support importing
data from external system or exporting data to them.

In some cases, only the object structure is provided without a related publish
channel or enterprise service. The integration framework, by design, provides
support for inserting, updating, deleting and querying data according the business
rules defined in the business objects within the object structure. It does not provide
all the functionality that is available through the applications, including those that
are available from actions or the processing button on the screen. Some object
structures may provide support for some actions or the processing button on the
screen.

Master data objects
The integration framework provides a selection of predefined integration content
for master data, which generally consists of accounting, people, storeroom, labor,
classification, and vendor data.

Asset object:

The MXASSET object structure allows for bidirectional synchronization of asset
information, including attributes that define meters.

Purpose

The MXASSET object structure synchronizes individual assets, but not the asset
hierarchy as a whole. It supports the addition and update of meters tied to an
asset, but not the update of meter reading values. Inbound processing of
ASSETMETER is restricted to attributes that define the meter, not meter reading
values or other information pertaining to meter readings.

Integrating data with external applications 59

Prerequisite

You must synchronize applicable operating locations, storerooms, meters, and
items before loading assets.

The MBO relationship used to retrieve the ASSETMETER MBO is different from
the MBO relationship used in the Assets application. Therefore, the changed
attribute in the XML (outbound processing) is not set for any values from this
MBO.

This object structure does not support status changes or asset movement. A
standard service for assets is provided to support moving assets that reside in
operating locations. The standard service, Asset, provides an operation,
assetmoveSingleAsset, to support this functionality.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutAssetProcess - Populates the
Hierarchypath field if a classification is
associated with the asset.

Publish Channel MXASSETInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxAssetProcess - If the Hierarchypath is
provided, the processing class populates the
corresponding classstructureid field of the
asset, which creates the association of the
classification with the asset.

Enterprise Service MXASSETInterface

Processing Rules None

Integration Controls None

Chart of Account object:

The MXCOA object structure allows for inbound synchronization of chart of
accounts data.

Prerequisite

You must load general ledger components before loading the chart of accounts.
There is no predefined publish channel for this object structure.

60 Integrating Data With External Applications

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel None

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxCOAProcess - Can process as a
combination of delimited segments or as
individual components that are part of the
GLACCOUNT datatype definition.

Enterprise Service MXCOAInterface

Processing Rules None

Integration Controls None

Examples of inbound processing

Processing as a combination of delimited segment is available for XML and
interface tables. You can specify the general ledger account this way in all object
structures.
<GLACCOUNT>

<VALUE>6400-2-10</VALUE>
</GLACCOUNT>

The object structure validates each segment, then creates the chart of account
record in database with the following values:
v GLACCOUNT=6400-2-10
v GLCOMP01-6400
v GLCOMP02=2
v GLCOMP03=10

You can also process the object as individual components that are part of the
GLACCOUNT datatype definition.
<GLACCOUNT>
<GLCOMP glorder="0">6400</GLCOMP>
<GLCOMP glorder="1">2</GLCOMP>
<GLCOMP glorder="2">10</GLCOMP>
</GLACCOUNT>

The object structure validates the components and creates the account, using the
delimiter defined in the GLCONFIGURE table for each segment. This option is
available for XML only.

Integrating data with external applications 61

Classification item object:

The MXCLASSIFICATION object structure allows for bidirectional synchronization
of classifications, including Class Use With, Class Specs, and Class Spec Use With.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXCLASSInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxClassificationProcess - Processing logic
to find classification and parent using
Hierarchypath. Because the system allows
duplicate classifications (hierarchypaths), an
exception is generated when attempting to
update a classification if duplicates exist.

Enterprise Service MXCLASSInterface

Processing Rules None

Integration Controls None

Craft object:

The MXCRAFT object structure allows for bidirectional synchronization of craft
information. Craft information includes crafts, craft skills and craft rates.

Prerequisite

If the craft references a skill or contracts, that information must exist prior to
loading crafts.

A craft can have a standard rate, a rate for each skill level for the craft, or different
rates for each contract that provides the craft, with an optional skill-level rate for
each contract.

The CRAFT and CRAFTSKILL records have a STANDARDRATE field for the
hourly rate for each craft or skill associated with the craft.

The CRAFTRATE record specifies rates for vendors that supply the craft and,
optionally, different rates for each combination of skill, craft, and vendor.

62 Integrating Data With External Applications

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXCRAFTInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

None

Enterprise Service MXCRAFTInterface

Processing Rules None

Integration Controls None

Financial project object:

The MXPROJ object structure allows for bidirectional synchronization of financial
project information. This object structure synchronizes individual tasks and projects
as separate messages. It does not synchronize a project and all its child tasks in a
single message.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXPROJInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

None

Integrating data with external applications 63

Predefined integration components Value and description

Enterprise Service MXPROJInterface

Processing Rules None

Integration Controls None

General ledger (GL) component object:

The MXGLCOMP object structure allows for inbound synchronization of GL
components.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel None

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

None

Enterprise Service MXGLCOMPInterface

Processing Rules None

Integration Controls None

Labor object:

The MXLABOR object structure allows for bidirectional synchronization of labor
information, including person and labor craft rates.

Prerequisite

You must synchronize any associated craft, work location, or storeroom location
before loading labor. Each person record can have only one labor record.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

64 Integrating Data With External Applications

Predefined integration components Value and description

Object Structure definition class functionality MoutLaborProcess - Processing logic
disabled.

Publish Channel MXLABORInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxLaborProcess - Supports status changes.
Sets the ORGID for LaborCraftRate MBO
from the parent MBO. Also sets the
PERSONID on the PERSON record, based
on the PERSONID in the LABOR record

Enterprise Service MXLABORInterface

Processing Rules None

Integration Controls None

Person object:

The MXPERSON object structure allows for bidirectional synchronization of person
information, including phone, email, and SMS data.

Purpose

This object structure supports synchronizing individual person data. It does not
support updating availability information for a person record. The object structure
also supports status changes.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXPERSONInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Integrating data with external applications 65

Predefined integration components Value and description

Object Structure processing class
functionality

MaxPersonProcess - Requires that data for
all child objects (PHONE, EMAIL, SMS)
must be provided with every person update.
Due to a lack of a unique key on these
objects, the logic always deletes all of the
child objects and adds them again. If a
person has three email records in the system
and a person message is received with two
email records, the email record not included
in the person message will be deleted. The
object structure supports status changes.

Enterprise Service MXPERSONInterface

Processing Rules None

Integration Controls None

Person/user object:

The MXPERUSER object structure allows for bidirectional synchronization of
person/user information. This object structure supports status changes.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXPERUSERInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxPersonUserProcess - Processing is
required to save the person data prior to
saving of the user data. This object structure
supports status changes.

Enterprise Service MXPERSUSERnterface

Processing Rules None

Integration Controls None

Storeroom location object:

The MXSTORELOC object structure allows for bidirectional synchronization of
storeroom, labor, and courier locations.

66 Integrating Data With External Applications

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutLocProcess - provides filtering to send
only storeroom, courier, or labor locations.

Publish Channel MXSTORELOCInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxLocProcess - provides filtering to accept
only storeroom, courier, or labor locations.

Enterprise Service MXSTORELOCInterface

Processing Rules None

Integration Controls None

Vendor (Companies) master object Structure object:

The MXVENDORMSTR object structure allows for bidirectional synchronization of
vendor master data.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXVENDORMSTRInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

None

Enterprise Service MXVENDORMSTRInterface

Integrating data with external applications 67

Predefined integration components Value and description

Processing Rules None

Integration Controls None

Vendor (Companies) object:

The MXVENDOR object structure allows for bidirectional synchronization of
organization-level vendor data, including contacts.

Prerequisite

To enable this object structure to create the company master record, select the
Automatically Add Companies to Company Master option for the set associated
with the organization to which the vendor record is being added. The
MXVENDOR object structure supports status changes.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXVENDORInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxComProcess - Provides logic to support
creating the company master record.

Enterprise Service MXVENDORInterface

Processing Rules None

Integration Controls None

Item and inventory objects
The integration framework provides a selection of predefined integration content
for item and inventory objects, such as service items, tool items, inventory vendors,
and issues.

Item object:

The MXITEM object structure allows for bidirectional synchronization of item data,
including conversions, item specs and conditions. This object structure supports
status changes.

68 Integrating Data With External Applications

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutItemProcess - Filter to not set tool or
service items. Supports retrieval of the
hierarchypath for the classstructureid of the
item.

Publish Channel MXITEMInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxItemProcess - If the inbound transaction
is an item update and the capitalized flag of
the item has changed, a method is called to
change the capitalized status of the item. If
the item type is not ITEM or a valid
synonym. Supports status changes.

Enterprise Service MXITEMInterface

Processing Rules None

Integration Controls None

Service item object:

The MXSERVITEM object structure allows for bidirectional synchronization of
service item data. The main object of the object structure, SERVICEITEMS, is a
nonpersistent object.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality None

Publish Channel MXSERVITEMInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Integrating data with external applications 69

Predefined integration components Value and description

Object Structure processing class
functionality

None

Enterprise Service MXSERVITEMInterface

Processing Rules None

Integration Controls None

Tool item object:

The MXTOOLITEM object structure allows for bidirectional synchronization of tool
item data, including tool item specs.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutToolItemProcess - Supports retrieval of
the hierarchypath for the classstructureid of
the item.

Publish Channel MXTOOLITEMInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxToolItemProcess - If the inbound
transaction is an item update and the
capitalized flag of the item has changed, a
method is called to change the capitalized
status of the item.

Enterprise Service MXTOOLITEMInterface

Processing Rules None

Integration Controls None

Inventory object:

The MXINVENTORY object structure allows for bidirectional synchronization of
inventory (item-storeroom) data, including inventory costs.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

70 Integrating Data With External Applications

Predefined integration components Value and description

Object Structure definition class functionality MoutInvProcess - Sets the value of the
ITEMTYPE field from the ITEM object.

Publish Channel MXINVENTORYInterface

Processing Rules SKIPINVENTORY - Skips the record if its
ITEMTYPE is in the SKIPITEMTYPE
integration control.

Integration Controls SKIPITEMTYPE

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxInvProcess - Supports status changes.

Enterprise Service MXINVENTORYInterface

Processing Rules None

Integration Controls None

Inventory balance object:

The MXINVBAL object structure allows for bidirectional synchronization of
inventory balance data. The balance change information in this object structure is
for the lowest level (BIN or LOT) within the application.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutInvBalancesProcess - Sets the value of
the ITEMTYPE field from the ITEM object.

Publish Channel MXINVBALInterface

Processing Rules SKIPINVBALITM - Skips the record if its
ITEMTYPE is in the SKIPITEMTYPE
integration control.

Integration Controls SKIPITEMTYPE

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Integrating data with external applications 71

Predefined integration components Value and description

Object Structure processing class
functionality

MaxInvBalancesProcess - The inbound
inventory balance object structure internally
calls the current balance adjustment method,
and this creates a CURBALADJ financial
transaction in INVTRANS.

Enterprise Service MXINVBALInterface MXINVBALQInterface
- A second enterprise service that is
configured for operation query.

Processing Rules None

Integration Controls None

Item vendor object:

The MXINVVENDOR object structure allows for bidirectional synchronization of
vendor-item data.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutInvVendorProcess -Sets the value of the
ITEMTYPE field from the ITEM object and
set the value of the CURRENCYCODE from
the vendor (companies) object.

Publish Channel MXINVVENDORInterface

Processing Rules INVVITEMTYPE - Skips the record if its
ITEMTYPE is in the ITEMTYPEFORINV
integration control.

Integration Controls ITEMTYPEFORINV

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxInvVendorProcess - If the inbound
message contains a currency code and that
code differs from the vendor's currency
code, an error is reported.

Enterprise Service MXINVENDORInterface

Processing Rules None

Integration Controls None

72 Integrating Data With External Applications

Inventory reservations object:

The MXINVRES object structure provides for the bidirectional synchronization of
inventory (storeroom) reservations. This object structure does not process direct
issue reservation records created by the system.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutRSVProcess - Skips reservations that
are for direct issues.

Publish Channel MXINVRESInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

None

Enterprise Service MXINVRESInterface

Processing Rules None

Integration Controls None

Inventory issues object:

The MXINVISSUE object structure provides for the bidirectional synchronization of
inventory (storeroom) issues and returns.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality MoutISUProcess - Skips reservations that are
for direct issues.

Publish Channel MXINVISSUEInterface - Filters out direct
issues from MATUSETRANS (PONUM is
not null and ISSUETYPE is ISSUE or
RETURN) because they are handled by the
receipts (MXRECEIPTInterface) object
structure. Filters out variance transactions
that are written to MATUSETRANS by the
invoice approval process.

Processing Rules None

Integrating data with external applications 73

Predefined integration components Value and description

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

MaxISUProcess - If the action provided is
not an Add action, then an exception is
generated. Validates ISSUETYPE to ensure
that it is ISSUE, RETURN, or null. If it is
any other value, an error is reported. If it is
null, the value is set to ISSUE by default.

Enterprise Service MXINVISSUEInterface

Processing Rules None

Integration Controls None

Documents objects
The integration framework provides a selection of predefined integration content
for documents, such as purchasing records, invoices, and work order records.

The STATUSIFACE field and processing:

All purchasing and work order documents have a status. The STATUSIFACE field
identifies whether related transactions contain new or updated records, or status
changes only.

In general, the field STATUSIFACE applies to all object structure subrecords that
are created from stateful MBOs, which are MBOs that have a STATUS field and
support status change actions. The STATUSIFACE field is provided as a
nonpersistent field to those objects where integration supports a status change.

The STATUSIFACE field and outbound processing

While processing an object structure subrecord that has been created from a
stateful MBO, the outbound integration processing looks for a STATUS field in the
MBO and a STATUSIFACE field in the corresponding object structure subrecord. If
both fields exist, the processing sets the value of the STATUSIFACE field to the
value of the changed attribute for the corresponding STATUS field. A value of 0
indicates that the status was not changed. A value of 1 indicates that the status
was changed.

This processing applies only to event-generated outbound messages, not to
messages exported via the data export feature or through a programmatic
invocation.

The STATUSIFACE field and inbound processing

When processing an object structure where the primary (top) MBO is stateful, the
inbound processing looks for a STATUSIFACE field on the corresponding object

74 Integrating Data With External Applications

structure subrecord to determine if the inbound message is to be processed as both
a document update and a status change, or as a status change only.

The following table describes inbound processing using object structures with a
stateful primary (top) MBO. It does not apply to any stateful MBO that is included
as a child object in an object structure.

Table 2. Actions taken during inbound processing of the STATUSIFACE field

Value of STATUSIFACE Document exists in the database Document does not exist in the
database

Not provided, or 0 v Updates the document in the
database

v If the status of the inbound
document is different from the
status in the database, updates the
status in the database

v Adds the document to the
database

v Sets the status in the database to
the status of the inbound message

1 Updates the status in the database Error

Purchase contracts object:

The MXPC object structure allows for bidirectional synchronization of purchase
contract information. This object structure currently only supports the purchase
contracts types of blanket and price.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 3. Purchase contracts object predefined components for outbound integration
processing

Predefined integration
components Value and description

Object structure processing
class functionality

MoutPCProcess - Skips reservations that are for direct issues.

Publish channel MXPCInterface - Uses processing rules so that the complete
purchase contract document is sent only for a status change.

Processing rules 1. SKIPPC - Skips the sending of the document if both of
the following conditions are true:

v The document has not been sent out before.

v The new status is not listed in the PCSEND control.

2. SKIPPCUPDATE -Skips the sending of the document
when updated but no status change.

3. SETSTATUSIFACE - Sets the value of the STATUSIFACE
field to 0 (false) for all status values except those listed in
the PCSEND control.

4. CHECKSTATUS - Sends only the purchase contract
header data if status changes and the new status is not in
the PCSEND control. (In this case, the full document was
previously sent and this is sending only the status change
notification).

Integration controls PCSEND

Integrating data with external applications 75

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 4. Purchase contracts object predefined components for inbound integration
processing

Predefined integration
components Value and description

Object structure processing
class functionality

MaxPCProcess - Supports status changes. Creates a new
revision when the purchase contract already exists and the
revision does not. Only supports contract types of blanket
and price.

Publish channel MXPCInterface

Processing rules None

Integration controls None

Purchase requisitions object:

The MXPR object structure allows for bidirectional synchronization of purchase
requisition information and supports status changes.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 5. Purchase requisitions object predefined components for outbound integration
processing

Predefined integration
components Value and description

Object structure definition
class functionality

None

Publish channel MXPRInterface – Uses the processing rules. The complete
purchase request document is sent only for status changes.

Processing rRules 1. SKIPPR - Skips the sending of the document if both of the
following conditions are true:

v The document has not been sent out before.

v The new status is not listed in the PRSEND control.

2. SKIPPRUPDATE - Skips the sending of the document
when updated but the status is not changed.

3. SETSTATUSIFACE - Sets the value of the STATUSIFACE
field to 0 (false) for all status values except those listed in
the PRSEND control.

4. CHECKSTATUS - Sends only the purchase requisition
header data if status changes and the new status is not in
the PRSEND control. (In this case, the full document was
previously sent and this is sending only the status change
notification).

Integration controls PRSEND

76 Integrating Data With External Applications

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 6. Purchase requisitions object predefined components for inbound integration
processing

Predefined integration
components Value and description

Object structure processing
class functionality

MaxPRProcess – Supports status changes. If the current status
of the purchase requisition is approved, to support updates
the processing class will change the status back to waiting for
approval, perform updates and then return the status to what
is identified in the XML message.

Publish channel MXPRInterface

Processing rules None

Integration controls None

Purchase order object:

The MXPO object structure allows for bidirectional synchronization of purchase
order information and supports status changes.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 7. Purchase order object predefined components for outbound integration processing

Predefined integration
components Value and description

Object structure definition
class functionality

None

Publish channel MXPOInterface - Uses processing rules, the complete
purchase order document is only sent only for status
changes.

Processing rules 1. SKIPPO - Skips the sending of the document if both of
the following conditions are true:

v The document has not been sent out before.

v The new status is not listed in the POSEND control.

2. SKIPPOUPDATE - Skips the sending of the document
when updated but the status is not changed.

3. SETSTATUSIFACE - Sets the value of the STATUSIFACE
field to 0 (false) for all status values except those listed in
the POSEND control.

4. CHECKSTATUS - Sends only the purchase order header
data if status changes and the new status is not in the
POSEND control. (In this case the full document was
previously sent and this is sending only the status change
notification).

Integration controls POSEND

Integrating data with external applications 77

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 8. Purchase order object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing
class functionality

MaxPOProcess - supports status changes.

If the current status of the purchase order is approved, to
support updates, the processing class changes the status back
to waiting for approval, performs the updates, and then
returns the status to what is identified in the XML message.

Publish channel MXPOInterface

Processing rules None

Integration controls None

Invoice object:

The MXINVOICE object structure allows for bidirectional synchronization of
invoice information and supports status changes.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 9. Invoice object predefined components for outbound integration processing

Predefined integration
components Value and description

Object structure definition class
functionality

None

Publish channel MXINVOICEInterface - Uses processing rules, the complete invoice document
is sent only for status changes.

Processing rules 1. SKIPINVOICE - Skips the sending of the document if both of the following
conditions are true:

v The document has not been sent out before.

v The new status is not listed in the IVSEND control.

2. SKIPINVIOCEUPDATE - Skips the sending of the document when
updated but the status is not changed.

3. SETSTATUSIFACE - Sets the value of the STATUSIFACE field to 0 (false)
for all status values except those listed in the IVSEND control.

4. CHECKSTATUS – Sends only the invoice header data if the status changes
and the new status is not in the IVSEND control. (In this case the full
document was previously sent and this is sending only the status change
notification).

Integration controls IVSEND

78 Integrating Data With External Applications

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 10. Invoice object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing class
functionality

The inbound processing creates and updates INVOICECOST lines only if one
of the following conditions is met:

v The invoice line does not reference a purchase order line.

v The corresponding purchase order line does not have a distribution.

v The purchase order line does not reference a storeroom.

In all other cases, the inbound processing ignores INVOICECOST information
when creating or updating the invoice.

If the inbound message provides INVOICETERMS, the inbound processing
deletes the old terms and adds the new ones.

Users can optionally specify a price variance in the PRICEVAR field on each
invoice line, if invoice matching is done in the external system and price
variances determined in the external system are sent to create variance
transactions to update work orders and storerooms. In order to process these
variances, a value must exist for OWNERSYSID in the inbound invoice, and it
cannot be the same as the value of MAXVARS.MXSYSID.

Users can optionally specify a price variance in the PRICEVAR field on each
invoice line, if invoice matching is done in the external system and price
variances determined in the external system are sent to create variance
transactions to update work orders and storerooms. In order to process these
variances, a value must exist for OWNERSYSID in the inbound invoice, and it
cannot be the same as the value of MAXVARS.MXSYSID.

The IVMATCH collaboration switch requires the following values:

v OWNER1SYSID value is always “THISMX”.

v OWNER2SYSID value is the value of INVOICE.OWNERSYSID.

If the evaluation is false, line level invoice variances are ignored in the invoice
processing.

The following are the typical scenarios for using the invoice interface:

v Invoice Matching in the system (AP Outbound): Invoices received from
third parties, either electronically or manually, are processed by the system;
that is, they are matched against receipts, if applicable, and then approved.
Alternately, payment schedules created in the system will result in approved
invoices being created based on the schedule. These approved invoices
result in a payment advice being sent to an external AP system. The process
of matching also results in accounting entries being posted to the general
ledger.

v Invoice Matching in external system (Variances Inbound): The system does
not do the invoicing, but accepts matched invoices from external systems
and applies any variances back to the respective work orders, storerooms,
and so on. The accounting entries related to the accounts payable and/or
variances must be recorded in the external system; they will not be sent out.

The primary intent of this interface is to provide the system with any variance
information necessary for updating the work order costs.

Publish channel MXINVOICEInterface

Integrating data with external applications 79

Table 10. Invoice object predefined components for inbound integration processing (continued)

Predefined integration
components Value and description

Processing rules None

Integration controls None

The following table shows an example of possible INVOICE.OWNERSYSID values,
the evaluation that is generated, and the default result of the evaluation.

Table 11. Evaluation example

Value of
INVOICE.OWNERSYSID Evaluation

Result
(default)

Null OWNER1SYSID=”THISMX” and OWNER2SYSID=”THISMX” False

MXSYSID OWNER1SYSID=”THISMX” and OWNER2SYSID=”THISMX” False

EXTSYSID OWNER1SYSID=”THISMX” and OWNER2SYSID=”EXT” True

Any other value OWNER1SYSID=”THISMX” and OWNER2SYSID=”EXT” True

Outbound processing rules for work order interfaces:

Unlike purchasing document interfaces, work order document interfaces do not
have a STATUSIFACE field and do not send status change notifications. A work
order document interface is first sent out when the status of a work order changes
to WOSTART and on every subsequent update, regardless of the status of the work
order.

Users can configure the start value in the WOSTART control. Any status that you
specify in the control is the value, not the MAXVALUE. If multiple synonym
values exist for a status, list all applicable synonyms.

Work order object:

The MXWO object structure allows for bidirectional synchronization of work order
information and supports status changes.

Purpose

The system first sends out a work order when it reaches the status in the
WOSTART control, then on all updates thereafter. The entire work order document
is always sent.

The work order interface contains all the information defined by system on the
work order, but it does not provide additional information about projects or
financial control data, equipment, and locations that is not part of the standard
work order. If necessary, you can add the additional information via user fields.

The system treats work order tasks as work orders. Both have similar properties
and they are stored in the same table. If a user creates a work order, adds
tasks/child work orders to the work order, and then approves the work order, the
Inherit Status Changes flag on the work order indicates whether approval of the
work order also results in approval of all the tasks/child work orders of that

80 Integrating Data With External Applications

particular work order. The default is Y, so when a work order is approved, any
child tasks or work orders that inherit the parent's approval based on this flag are
also approved.

The outbound event listener on the work order MBO receives multiple
independent events, one for each work order, and they are processed and sent out
independently. Therefore, a work order with three tasks and two child work orders
results in six independent outbound work orders.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 12. Work order object predefined components for outbound integration processing

Predefined integration
components Value and description

Object structure definition
class functionality

None

Publish channel MXWOInterface - Uses processing rules, the complete work
order document is sent only for status changes.

Processing rules SKIPWO – Skips the sending of the document if both of the
following conditions are true:

v The document has not been sent out before.

v The new status is not listed in the WOSTART control.

Integration controls WOSTART

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 13. Work order object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing
class functionality

StatefulMicSetIn - Generic class that supports status changes.

Publish channel MXWOInterface

Processing rules None

Integration controls None

Work order detail object:

The MXWODETAIL object structure allows for bidirectional synchronization of
work order information, including planned material, labor, service, and tools.

Purpose

The system first sends out a work order when it reaches the status in the
WOSTART control, then on all updates thereafter. The entire work order document
is always sent.

Integrating data with external applications 81

The MBO relationship that is used to retrieve the reservation MBO (INVRESERVE)
is different from the relationship that is used in the Work Order Tracking
application. Therefore, the changed attribute in the XML is not set for any values
from this MBO

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 14. Work order detail object predefined components for outbound integration
processing

Predefined integration
components Value and description

Object structure definition
class functionality

MoutWORsvProcess - Provides the code required to update
the sendersysid column on the invreserve MBO.

Publish channel MXWODETAILInterface - Uses processing rules, the complete
work order document with plan information is sent only for
status changes.

Processing rules SKIPWO - Skips the sending of the document if both of the
following conditions are true:

v The document has not been sent out before.

v The new status is not listed in the WOSTART control.

Integration controls WOSTART

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 15. Work order detail object predefined components for inbound integration
processing

Predefined integration
components Value and description

Object structure processing
class functionality

None

Publish channel None

Processing rules None

Integration controls None

Work order hierarchy object:

The MXWOHIER object structure allows for bidirectional synchronization of work
order information, including child work orders, and also supports status changes.
The system first sends out a work order when it reaches the status in the
WOSTART control, then on all updates thereafter. The entire work order document
is always sent.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

82 Integrating Data With External Applications

Table 16. Work order hierarchy object predefined components for outbound integration
processing

Predefined integration
components Value and description

Object structure definition
class functionality

None

Publish channel MXWOHierInterface - Contains an event filter class,
WOHierarchyEventFilter, that prevents the child MBOs from
being sent out when they are being sent out via a parent
MBO (where both parent and child MBOs are initiated by the
same event action).

Processing rules SKIPWO - Skips the sending of the document if both of the
following conditions are true:

v The document has not been sent out before.

v The new status is not listed in the WOSTART control.

Integration controls WOSTART

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 17. Work order hierarchy object predefined components for inbound integration
processing

Predefined integration
components Value and description

Object structure processing
class functionality

MaxWOHierarchyProcess - Supports status changes and
commit processing to support loading multiple related work
orders in a single message.

Publish channel MXWOHierInterface

Processing rules None

Integration controls None

Transaction interface objects
The integration framework provides a selection of predefined integration content
for transaction interface objects, such as receipts, general ledger transactions, labor
time reporting, and meter readings.

Receipts object for materials and services:

The MXRECEIPT object structure allows for bidirectional synchronization of
purchase order receipt information for material and service receipts and also
supports status changes. The object structure uses a nonpersistent object to support
both material (MATRECTRANS) and service (SERVRECTRANS) receipts.

Purpose

In the outbound direction, this object structure processes purchase order receipts,
transfers (movements against receipts or receipts against internal POs), and returns
(returns to vendors after receipt inspection, or returns to vendor after acceptance
and goods movement from the inspection holding location).

Integrating data with external applications 83

For receipts that require inspection, the user-defined field INSPECTED indicates if
the receipt line was inspected in the external system. The interface does not
process transfers independently; each transfer is associated with a receipt.

You do not have to specify whether an inbound receipt is a material receipt or a
service receipt. The integration processing uses the POLINE to make the
determination.

All quantities, including return quantities, must be positive.

The two types of transfer records are identifiable by the following values in the
RECEIPTREFID field:
v Null: a receipt against an internal purchase order
v Not null: movement against a receipt

Do not specify a RECEIPTFREF value for returns. Returns are processed
independently of the corresponding receipt.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 18. Receipts object predefined components for outbound integration processing

Predefined integration
components Value and description

Object structure
definition class
functionality

MoutProcess - Processes receipts with issue type of RECEIPT or RETURN. If no issue type
is specified, it is treated as RECEIPT.

Processing for RECEIPT issue type and Inspection Required = N:

Material and service receipts:

v Uses inbound RECEIPTQUANTITY (for material receipts) or QTYTORECEIVE (for
service receipts) to create the receipt.

v Maps inbound REJECTEDQTY to the REJECTEDQTY field in the receipt.

v Ignores any other quantities.

v Does not look at the inbound INSPECTED field.

Material receipts (MATRECTRANS records):

v Sends out only RECEIPT and RETURN type records and TRANSFER type records
containing a PONUM (not a storeroom transfer). Sends out new receipts only, not
updates to existing receipts.

Service receipts (SERVRECTRANS records):

v Sends out RECEIPT and RETURN type records. Sends out new receipts and updates to
existing receipts.

Publish channel MXRECEIPTInterface

Processing rules Service receipts:

Sends out records when the status is equal to a value in the SERVRECSTAT control (default
COMP). This occurs under the following conditions:

v A record that does not require inspection is inserted.

v An existing record is updated in database and the status field is changed to COMP.

Integration controls SERVRECSTAT control identifies all statuses at which the system will send out service
receipt transactions. It can have multiple values. By default, the value is COMP.

84 Integrating Data With External Applications

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Integrating data with external applications 85

Table 19. Receipts object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing class
functionality

MaxRCVProcess -

Processing for RECEIPT issue type and Inspection Required = Y:

Material receipts:

INSPECTED = N:

v Uses only the inbound RECEIPTQUANTITY field to create the receipt;
ignores accepted and rejected quantity values.

v Creates a receipt with STATUS = WINSP (waiting inspection) and quantity
derived from RECEIPTQUANTITY.

INSPECTED = Y:

v Uses the inbound RECEIPTQUANTITY, ACCEPTEDQTY, and
REJECTEDQTY fields to create the receipt.

v Does not allow partial inspections or acceptances. RECEIPTQUANTITY
must equal ACCEPTEDQTY + REJECTEDQTY.

v Creates a receipt with STATUS = WASSET (if rotating item) or COMP (all
other items).

v Depending on quantities specified, can create up to three transactions—one
RECEIPT, one TRANSFER, and one RETURN.

Service receipts:

INSPECTED = N:

v Uses the inbound AMTTORECEIVE (if POLINE order quantity is null) or
QTYTORECEIVE (in other cases) to create a receipt; ignores all other
quantity values.

v Creates a receipt with STATUS = WINSP (waiting inspection) and quantity
derived from QTYTORECEIVE.

INSPECTED = Y:

v Uses the inbound QTYTORECEIVE, ACCEPTEDQTY, and REJECTEDQTY
fields to create a receipt.

v Does not allow partial inspections or acceptances. QTYTORECEIVE must
equal ACCEPTEDQTY + REJECTEDQTY.

v Creates a single transaction of type RECEIPT, with STATUS = COMP.

Processing for RETURN issue type:

Material and service receipts:

v Accepts return transactions for a POLINE only if there was an earlier receipt
for the same line; if Inspection Required = Y for the POLINE, the receipt
must have been approved. Otherwise, reports an error.

v Uses only the inbound RECEIPTQUANTITY (for material receipts) or
QTYTORECEIVE (for service receipts) field to create the receipt; ignores all
other quantity values.

v Creates a single transaction with issue type RETURN and the credit GL
account as the RBNI account.

Publish channel MXRECEIPTInterface

Processing rules None

Integration controls None

86 Integrating Data With External Applications

Material and rotating item receipt object:

The MXRCVROTITM object structure allows for inbound synchronization of
receipt information for items, including rotating items.

Purpose

This object structure supports inbound processing only.

This interface does not let you specify a status for the receipt; the status is always
assumed to be COMP.

This interface differs from the MXRECEIPTInterface in that it processes material
receipts exclusively and lets you identify serialized rotating assets to be created in
the case of rotating item receipts.

You can receive rotating items with or without asset numbers. If you receive them
without asset numbers, you must manually specify the asset numbers by using the
Receive Rotating Items dialog box in the Purchasing Receiving application.

For rotating items, the number of inbound transactions is one more than the
number of rotating items. One transaction exists for the total receipt quantity, and
one transaction exists for each rotating item associated with the receipt. For
example, for a receipt of ten rotating items produces eleven transactions.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 20. Material and rotating item receipt object predefined components for outbound integration processing

Predefined integration
components Value and description

Object structure definition class
functionality

None

Publish channel None

Processing rules None

Integration controls None

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Integrating data with external applications 87

Table 21. Material and rotating item receipt object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing class
functionality

MaxRcvRotItmMProcess - Reports an error if the purchase order line being
processed has LINETYPE = SERVICE or STDSERVICE.

Processing is the same as the inbound integration point processing class
functionality for material receipts using the MXRECEIPTInterface, with the
following additional processing:

v Receipts: If the line item is a rotating item and Inspection Required = N, or
INSPECTED = Y, the processing checks for asset information that
corresponds to the item provided in the interface. If the information is
available, the processing validates the number of asset records to ensure it
equals the RECEIPTQTY or ACCETPTEDQTY (whichever applies). If it
does, invokes the receiving functionality and creates asset as required.

v Returns: If the item being returned is a rotating item, ignores any asset
information.

In the system, the return of a rotating type item does not affect the assets
created by the original receipt. The asset records remain unchanged; only the
item balances are updated (if applicable).

Publish channel MXRCVROTITMInterface

Processing rules None

Integration controls None

General ledger (GL) object:

The MXGLTXN object structure allows for outbound synchronization of GL
transactions. This interface allows for the posting of site-level transactions to an
external general ledger application for accounting reconciliation.

Purpose

This interface uses a nonpersistent MBO with data from the following subrecords:
v SERVRECTRANS
v MATRECTRANS
v INVTRANS
v INVOICETRANS
v MATUSETRANS
v LABTRANS
v TOOLSTRANS

The event filter class, GLEventFilter, is used to set the events to the applicable
persistent objects listed.

The SOURECEMBO field identifies the database table in which the transaction
originated. Its value is derived from the GLSOURCEMBO synonym domain.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

88 Integrating Data With External Applications

Table 22. General ledger object predefined components for outbound integration processing

Predefined
integration
components Value Description

Object structure
definition class
functionality

MoutGLProcess -
Service receipts

Service receipts include the following entries:

v Accounting entries for non-distributed service receipts created by the receiving
application for services ordered on purchase orders (ISSUETYPE = RECEIPT,
COSTINFO=1)

v Accounting entries for distributed service receipts created by the receiving
application for services ordered on purchase orders (ISSUETYPE = POCOST)

v Accounting entries for purchase order services with Receipt Required = N that are
directly invoiced instead of being received (ISSUETYPE = INVOICE)

v Accounting entries for services that are not against purchase orders and are invoiced
directly (ISSUETYPE = INVOICE)

v Invoice variance transactions recorded against service receipts (ISSUETYPE =
INVOICE)

Service receipts (SERVRECTRANS) processing:

v Sets SOURCEMBO to SERVRECTRANS and ISSUETYPE to the value listed.

v INVOICE type transactions: sends out on insert.

v POCOST and RECEIPT type transactions: if Inspection Required = N for the
corresponding POLINE, sends out on insert. If inspection required = Y, sends out
when status is changed to COMP.

MoutGLProcess -
Material receipts

Material receipts include the following:

v Accounting entries for non-distributed material receipts created by the receiving
application for items/ tools ordered on purchase orders (ISSUETYPE = RECEIPT,
COSTINFO = 1)

v Accounting entries for distributed material receipts created by the receiving
application for items/ tools ordered on purchase orders (ISSUETYPE = POCOST)

v Accounting entries for Item transfers between storerooms (ISSUETYPE = TRANSFER
and PONUM=NULL)

v Accounting entries for receipt inspection transfers of items between the receipt
inspection storeroom and the purchase order line storeroom (ISSUETYPE =
TRANSFER and RECEIPTREF!=NULL and PONUM!=NULL)

v Accounting entries for receipts against internal purchase orders (ISSUETYPE =
TRANSFER and RECEIPTREF=NULL and PONUM!=NULL)

v Accounting entries for receipt inspection goods return of items and materials
(ISSUETYPE = RETURN)

v Accounting entries for return to vendor from a storeroom or direct issue purchase
order lines (ISSUETYPE = RETURN)

v Invoice variance transactions recorded against material receipts (ISSUETYPE =
INVOICE)

v Accounting transaction for increasing the kit item's INVENTORY control account
value when kits are made (ISSUETYPE = KITMAKE). transactions for increasing the
INVENTORY control account for each constituent item of a kit when a kit is
disassembled (ISSUETYPE = KITBREAK)

Material receipts (MATRECTRANS) processing:

v Sets SOURCEMBO to MATRECTRANS and ISSUETYPE to value listed.

v Sends out INVOICE, RECEIPT, TRANSFER, RETURN, KITMAKE and KITBREAK
type transactions on insert.

v For POCOST type transactions on insert if status is COMP (that is, on insert if
Inspection Required = N, and when status changed to COMP if Inspection Required
= Y).

Integrating data with external applications 89

Table 22. General ledger object predefined components for outbound integration processing (continued)

Predefined
integration
components Value Description

MoutGLProcess -
Inventory
adjustment
transactions

Inventory adjustment transactions include the following:

v Inventory current balance adjustments (ITTYPE = CURBALADJ)

v Inventory standard/ average cost adjustments (ITTYPE = STDCOSTADJ/
AVGCOSTADJ)

v Cost difference when a kit is disassembled and there is a difference between the
value of the kit and the sum of the kit component values (ITTTYPE = KITCOSTVAR)

v Physical count reconciliation (ITTYPE = RECBALADJ)

v Capitalized cost adjustment (ITTYPE = CAPCSTADJ)

v Standard cost receipt adjustment (ITTYPE = STDRECADJ)

Inventory adjustment (INVTRANS) processing:

v Sets SOURCEMBO to INVTRANS and ITTYPE to value listed.

v Does not send out transactions with ITTTYPE = INSERTITEM, CREATEASSET and
PHYSCNT, as they are considered audit records rather than accounting transactions.

v Sends out all other transactions on insert.

MoutGLProcess -
Invoice transactions

Invoice transactions include the following transactions created by invoice approval:

v Invoice TOTAL transaction (amount payable to invoice vendor, TRANSTYPE =
TOTAL)

v Invoice line tax transactions (tax accounting for each TAX code for an invoice line,
TRANSTYPE = TAX1:TAX5)

v Invoice currency variance transaction (TRANSTYPE = CURVAR)

v Invoice price variance transactions (TRANSTYPE = INVCEVAR)

Invoice transaction (INVTRANS) processing:

v Sets SOURCEMBO to INVOICETRANS and TRANSTYPE to the value listed.

v Sends out all transactions when they are created.

MoutGLProcess -
Material issue and
return transactions

Material issue and return transactions include the following:

v Accounting entries for items issued from a storeroom in the system (ISSUETYPE =
ISSUE)

v Accounting entries for items returned to a storeroom (ISSUETYPE = RETURN)

Material issue and return (MATUSETRANS) processing:

v Sets SOURCEMBO to MATUSETRANS and ISSUETYPE to value listed.

v Does not send out direct issue transactions that are created by PO receiving/ invoice
variances in MATUSETRANS, as they are accounted for in MATRECTRANS.
Identifies such transactions by their PONUM, so all MATUSETRANS transactions
that have a PO reference are not sent out by this interface.

v Sends out all other transaction at time of creation.

MoutGLProcess -
Labor transactions

Labor Transaction (LABRTRANS) processing:

v Sets SOURCEMBO to LABTRANS.

v If approval not required, send out labor actuals against work orders on insert.

v If approval required, sends out transaction after it is approved (when
GENAPPSERVRECEIPT is Y).

MoutGLProcess -
Tool transactions

Tool Transaction (TOOLTRANS) processing:

v Sets SOURCEMBO to TOOLTRANS.

v Sends out usage of tools on work orders on creation of TOOLTRANS

Publish channel MXGLTXNInterface

Processing rules SKIPGL Skips the sending of the general ledger transaction based on the value in SOURCEMBO
existing in the GLSOURCE control.

Integration
controls

GLSOURCE

90 Integrating Data With External Applications

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 23. General ledger object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing class
functionality

None

Publish channel None

Processing rules None

Integration controls None

Labor time reporting object:

The MXEMPACT object structure allows for posting site-level actual time reported
in the system to external applications. The approved labor actuals are sent out and
all inbound labor actuals are accepted regardless of status. The status of existing
records are not updated when processing inbound transactions.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 24. Labor time reporting object predefined components for outbound integration processing

Predefined integration
components Value and description

Object structure
definition class
functionality

None

Publish channel MXEMPACTInterface

Processing rules SKIPEMPACT - Skips the sending of the labor pay (LABTRANS) if the transaction is not
approved (GENAPPRSERVRECEIPT = 0).

Integration controls

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 25. Labor time reporting object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing class
functionality

MaxEmpactProcess - Allows add actions only. A null action is processed as an
add action. LABTRANSID is not allowed to be passed with a value because
the LABTRANSID is program-generated during the add action.

Publish channel MXEMPACTInterface

Processing rules None

Integration controls None

Integrating data with external applications 91

Meter reading object:

The MXMETERDATA object structure allows inbound synchronization of meter
reading data. This object structure supports only inbound processing. This interface
does not support the processing of meter readings for work order tasks.

Outbound integration processing

The following table shows the predefined values used in outbound integration
processing.

Table 26. Meter reading object predefined components for outbound integration processing

Predefined integration
components Value and description

Object structure
definition class
functionality

None

Publish channel None

Processing rules None

Integration controls None

Inbound integration processing

The following table shows the preconfigured values used in inbound integration
processing.

Table 27. Meter reading object predefined components for inbound integration processing

Predefined integration
components Value and description

Object structure processing class
functionality

MaxMeterDataProcess - The processing class verifies that the following
attributes are provided:

v Site ID

v Asset or location

v Meter ID or condition monitoring point

v Meter reading value, reading date time, inspector

When a work order is specified, the following processing occurs:

v If a measurement point is specified, the processing class identifies the asset
or location meter corresponding to the site and measurement point, and
creates a meter reading for that asset or location meter.

v If a meter is specified, then either asset or location must be specified. If both
are specified, the processing class assumes the meter belongs to the asset,
and processes the meter accordingly. If only the asset or location is
specified, then the meter on the corresponding entity is updated.

If no work order is specified, the following processing occurs:

v If a measurement point is specified, the reading is recorded for the
measurement point.

v If a meter is specified, then either asset or location must be specified. If both
are specified, the processing class assumes the meter belongs to the asset,
and processes the meter accordingly. If only asset or location is specified,
then the meter on the corresponding entity is updated.

92 Integrating Data With External Applications

Table 27. Meter reading object predefined components for inbound integration processing (continued)

Predefined integration
components Value and description

Publish channel MXMETERInterface

Processing rules None

Integration controls None

System objects
System objects are MBOs that are generally used for application or metadata
configuration. Updating data using system objects may require specific
post-processing activities, for example, reconfiguring the database.

The following restrictions apply to the use of enterprise services, publish channels,
and object structures:
v You cannot enable listeners for publish channels.
v You cannot process system interfaces via interface tables or flat files.
v You must specify an action code on inbound system interfaces.

Object structures object:

The MXINTOBJECT object structure allows for inbound synchronization of the
definition of object structures, including column aliases. System validations that
apply to users adding, deleting and modifying predefined object structures apply
to the modification of object structures via the Object Structure object structure
service.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Integrating data with external applications 93

Enterprise service object:

The MXENTSRV object structure allows for inbound synchronization of the
definition of enterprise services and their corresponding processing rules and
control values.

Prerequisite

Before enterprise service creation, make sure all controls used by the enterprise
service exist.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Publish channel object:

The MXIFACEOUT object structure allows for inbound synchronization of the
definition of publish channels their corresponding processing rules and control
values. Before publish channel creation, make sure all controls used by the publish
channel exist.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

94 Integrating Data With External Applications

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

End point object:

The MXENDPOINT object structure allows for inbound synchronization of the
definition of end points.

Prerequisite

Before end point creation, make sure handlers used by end points exist.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Integrating data with external applications 95

External system object:

The MXEXTSYSTEM object structure allows for inbound synchronization of the
definition of an external system, the enterprise services and publish channels used
by the external system, and their corresponding control values.

Prerequisite

Before external system creation, make sure all enterprise services, publish channels,
end points, and controls used by the external system exist.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Integration control object:

The MXIFACECONTROL object structure allows for inbound synchronization of
Integration Controls and their system level default values.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

96 Integrating Data With External Applications

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Invocation channel object:

The MXIFACEINVOKE object structure allows for inbound synchronization of an
invocation channel definition.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Integration queue object:

The MXQUEUE object structure allows for inbound synchronization of integration
queue definitions.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Integrating data with external applications 97

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Message definition object:

The MXMESSAGE object structure allows for inbound synchronization of system
error and warning messages.

Prerequisite

In addition to the new messages added via this object structure, the messages.xml
file must be updated with the corresponding message text.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

98 Integrating Data With External Applications

Predefined integration components Value and description

Integration Controls None

MBO configuration object:

The MXOBJECTCFG object structure allows for inbound synchronization of MBO
definition information.

Prerequisite

Use this object structure with caution.

Use only add, addchange, or change action codes when synchronizing inbound
data through this object structure. Do not use the replace action unless you
completely replace the MAXOBJECTCFG and MAXATTRIBUTECFG data.

The delete action presents the risk of deleting predefined records in the database
tables associated with MAXOBJECTCFG and MAXATTRIBUTECFG MBOs.

An inbound setting restriction exists on the CHANGED, EAUDITENABLED,
EAUDITFILTER, EAUDITTBNAME, IMPORTED, STORAGEPARTITION,
MAXOBJECTID column, so the XML value is not set to the MBO.

After synchronizing inbound data with this interface, for your changes to take
effect, use the Database Configuration application and select the Apply
Configuration Changes action.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Integrating data with external applications 99

Predefined integration components Value and description

Object Structure processing class
functionality

psdi.iface.app.configure.MaxObjcfgProcess -

If the event that MAXOBJECTCFG is
creating a view (MAXOBJECTCFG.VIEW=1),
the processing class skips any
MAXATTRIBUTECFG MBOs associated with
the referred MAXOBJECTCFG.

This class also delays the SAVE validation
on MAXOBJECTCFG until all its associated
attributes are successfully added into the
database.

Enterprise Service N/A

Processing Rules None

Integration Controls None

Domain object:

The MXDOMAIN object structure allows for inbound synchronization of domain
information.

Purpose

Some fields in the database are associated with select value lists. These lists of
defined values are known as domains (sometimes referred to as value lists).

This object structure synchronizes ALN, numeric, numeric range, table, and
crossover domains definitions.

Prerequisite

Update and delete operations require external systems to provide valid
DOMAINID values.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

100 Integrating Data With External Applications

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Communication template object:

The MXCTEMPLATE object structure allows for bidirectional synchronization of
communication templates that users can leverage to standardize frequently used
e-mail communications and notifications.

Purpose

A communication template is a definition of a mail message with subject, message,
and recipient information that is processed when certain nodes become current, or
along specified workflow routing paths between nodes.

This object structure synchronizes application, change status, custom class,
command line, and set value actions, but not action group.

Prerequisite

Update and delete operations require external systems to provide a valid
ACTIONID value.

This object structure does not support the creation of action groups.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel MXCTEMPLATEInterface

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integrating data with external applications 101

Predefined integration components Value and description

Integration Controls None

Action definition object:

The MXACTION object structure allows for inbound synchronization of workflow
action definitions that can be used with escalation, service level agreement (SLA),
and workflow processes.

Purpose

An action is an event that you want the system to trigger when it encounters
records that meet the conditions defined by an escalation point, service level
agreement, or workflow process.

This object structure synchronizes application, change status, custom class,
command line, and set value actions, but not action group.

Prerequisite

Update and delete operations require that external systems provide a valid
ACTIONID value.

This object structure does not support the creation of action groups.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

102 Integrating Data With External Applications

System properties object:

The MXPROP object structure allows for inbound synchronization of system
properties and values.

Purpose

Prerequisite

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Integration module object:

The MXIM object structure allows for inbound synchronization of an integration
module definition including properties and LMO relationships.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Integrating data with external applications 103

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Logical management operations (LMO) object:

The MXLMO2 object structure allows for inbound synchronization of LMOs
including attributes.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Operational management product (OMP) object:

The MXOMP object structure allows for inbound synchronization of OMPs,
including relationships to CIs and configurations with IM and LMOs.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

104 Integrating Data With External Applications

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Launch entry object:

The MXLAUNCH object structure allows for inbound synchronization of Launch
Entries and context information.

Outbound Integration Processing

The following table shows the predefined values used in outbound integration
processing.

Predefined integration components Value and description

Object Structure definition class functionality N/A

Publish Channel N/A

Processing Rules None

Integration Controls None

Inbound Integration Processing

The following table shows the preconfigured values used in inbound integration
processing.

Predefined integration components Value and description

Object Structure processing class
functionality

N/A

Enterprise Service N/A

Processing Rules None

Integration Controls None

Integrating data with external applications 105

Data loading order
When you use the integration framework to load multiple sets of data into the
application database, you must maintain the dependencies so that the data is
loaded correctly. Use the following sequence of predefined object structures as a
guide to determine the order in which you load the data.

Object structures
MXGLCOMP
MXCOA
MXVENDORMSTR
MXVENDOR
MXPERSON
MXPERUSER
MXCRAFT
MXLABOR
MXSTORELOC
MXCLASSIFICATION
MXITEM
MXINVENTORY
MXINVBAL
MXINVVENDOR
MXSERVITEM
MXPROJ
MXASSET
MXWO
MXWODETAIL
MXWOHIER
MXINVRES
MXEMPACT
MXINVISSUE
MXGLTXN
MXTOOLITEM
MXPC
MXMETERDATA
MXPR
MXPO
MXRECEIPT
MXRCVROTITM
MXINVOICE

System object structures
MXINTOBJECT
MXIFACECONTROL
MXENTSRV
MXIFACEOUT
MXENDPOINT

106 Integrating Data With External Applications

MXQUEUE
MXEXTSYSTEM
MXIFACEINVOKE
MXIM
MXLMO2
MXOMP
MXLAUNCH
MXMESSAGE
MXOBJECTCFG
MXDOMAIN
MXCTEMPLATE
MXACTION
MXPROP

Integration data processing
You can configure integration components in different ways to meet your
integration requirements. You can integrate with multiple external applications,
and each application requires a different integration approach that is based on the
integration support that is provided by that application.

Planning to process data for integration
Before you initiate an integration transaction, you must decide which integration
components to use. You must also plan how to implement these components so
that you can achieve a successful integration with the external destination for your
integration.

The choice of the components that you use and how you implement them is often
determined by the external application that you are integrating with. These choices
include the following considerations:

Data type
Define the data, for example work orders and person data. When defined,
determine whether there are predefined object structures to support each
set of data or must you create more object structures.

Direction
For each set of data, which direction will the integration scenario
implement, sending outbound transactions, receiving inbound transactions,
or both? The direction of the integration can vary for each set of data.

Message exchange
This factor depends on the capabilities of the external application and
options can include integrating data by using files (XML or flat), calling
web services, and posting XML over HTTP. The method of exchanging
data and how often that occurs can vary for each set of data.

Customization
As data is exchanged, is customization within the application needed to
transform message content or to apply integration business rules? If
customization is required, does it use integration framework capabilities
such as Java exit classes, automation scripts, XSL maps, or processing rules,
or is customization implemented in the external application?

Integrating data with external applications 107

Depending upon the answers to these questions, you need different types of
component and API configurations, which can include:
v Object structures
v Publish channels and invocation channels
v Enterprise services
v Object structure services, enterprise services, and standard services
v Web services
v REST and OSLC APIs
v External systems
v Endpoints

Inbound data processing
The integration framework supports asynchronous and synchronous processing of
inbound integration messages with the following types of service; object structures,
enterprise services, or standard services.

For asynchronous processing, the external system establishes and maintains a
connection until the message is passed into a JMS queue. For synchronous
processing, the external system establishes maintains a connection until message
processing is complete.

Asynchronous processing of inbound messages
During asynchronous processing of inbound messages, an external application calls
an enterprise service and maintains a connection until the message is saved to a
JMS queue and the connection ends. If an error occurs during the save of the
message to the queue, the external application is responsible for reprocessing the
message.

Asynchronous processing is managed by sequential or continuous JMS queues.
Processing in a sequential queue guarantees the order of delivery of messages,
based on a first in, first out order. Processing in a continuous queue delivers
messages in any order.

You can use enterprise services to support the following transactions:
v Importing data from a flat file or an XML file
v Loading data from interface tables
v Receiving an XML message from an HTTP POST request
v Calling a web service that is configured to use a JMS queue
v Calling an EJB
v Using a direct JMS connection

All of these options support the use of an enterprise service, when the integration
message is passed into a JMS queue. When the message is in the queue, a separate
process that uses a cron task or a message-driven bean (MDB) picks up the
message from the queue. The message is then processed through the enterprise
service layer, the related object structure layer, and the business objects are
updated. Because messages are processed through a JMS queue, no response is
sent to the application that called the service and the Query operation is not
supported in this processing model.

108 Integrating Data With External Applications

Synchronous processing of inbound messages
You can implement synchronous inbound integration with an object structure,
enterprise, or standard service. These transactions require the establishment and
maintenance of a direct connection from the external application to the integration
framework for the duration of the transaction.

The external application maintains the connection to the service until business
objects are updated in the Maximo database or until business objects are returned
in response to a Query operation. The integration framework returns a response to
the external application to confirm the success or failure of message processing.

The following options are available for sending synchronous integration messages
to services:
v Posting of an XML message by using HTTP
v Starting a web service that is configured to bypass the JMS queue
v Starting an EJB

Object structure and enterprise services can use any of these options to support
Create, Update, Delete, Sync, and Query operations.

You can also access integration object structures, standard services, and application
business objects by using the REST API or the OSLC REST API.
Related concepts:
“REST API” on page 226
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli's process automation engine.

Initiation of asynchronous processing of inbound data
To initiate integration processing, the external system uses one of the supported
methods to establish a connection. After the external system and enterprise service
are validated, messages are placed in the JMS queue that is specified for the
enterprise service.

The procedure for establishing the initial connection varies depending on the
integration method that is used for the transaction. The following table describes
the available methods and the connections that these methods use.

Method Connection procedure

HTTP or HTTPS Post
method

Use the following URL:

hostname:port/meaweb/esqueue/extsysname/entservname where:

v extsysname is the name of the external system

v entservname is the name of the enterprise service

Integrating data with external applications 109

Method Connection procedure

EJB Start an EJB from a Java Platform, Enterprise Edition client by
using the following code:

public byte{} processExternalDataAsync(byte[] extData,
String serviceName, String sender)

On the client, specify the JNDI name of the Enterprise JavaBean,
ejb/maximo/remote/enterpriseservice, to look up the Enterprise
JavaBean reference and to start the method. The following
configurations are required on the Java Platform, Enterprise
Edition client:

v Access to the Home and Remote class files

v Access to the Java Platform, Enterprise Edition JAR files for the
server

v The URL of the server that hosts the Enterprise JavaBeans

v The class name of the context factory

The client code must instantiate the default IntialContext object.
The context derives the provider URL and the context factory
from the environment.

Data import feature
that uses XML or flat
files

The user clicks Data Import in an application.

Data import cron task The XMLFILECONSUMER cron task or the
FLATFILECONSUMER cron task polls the source directory that is
configured for data import.

Interface tables The external system writes message data to the appropriate
interface tables and updates the MXIN_INTER_TRANS queue
table with information about the sequence for processing the
records in the interface table.

A cron task polls the MXIN_INTER_TRANS queue table for
records to be processed.

Web services The external system starts an enterprise service that is deployed
as a web service that is configured not to bypass the JMS queue.

JMS direct The external system passes an XML message directly into the JMS
queue from another queuing system, such as WebSphere MQ.

When a connection is established, or when a cron task runs and identifies that data
is ready for import, the following steps occur:
1. The integration framework checks that the external system and the enterprise

service are valid and enabled.
2. If the messages are in flat file format, the integration framework checks that the

object structure supports flat structures.
3. If verification fails, the integration framework notifies the sender of the error

and does not process the data.
4. If the verification is successful, the integration framework identifies the

inbound JMS queue that is assigned to the enterprise service and writes the
message to the queue.

5. The integration framework updates the JMS message header with the names of
the external system and the enterprise service.

110 Integrating Data With External Applications

If a transaction that contains multiple instances of a record encounters errors,
error-handling varies depending on the exchange method used. The following
error-handling occurs, depending on the exchange type:
v For HTTP or EJB transactions only: If a transaction contains multiple instances of

a document, for example, if it contains 10 person records, a single message is
written to the JMS queue, not 10 individual messages. If one of the records has a
processing error, a total message processing exception occurs and none of the
records is committed to the database.

v For data import transactions only: If a transaction contains multiple instances of
a document, for example, if it contains 10 person records, the application writes
10 individual messages to the JMS queue. If one of the messages has a
processing error, an error transaction is logged for that message and the
remaining 9 messages continue to process in the application.

Initiation of synchronous processing of inbound data
To initiate synchronous processing, the external system uses one of the supported
methods to establish a connection. During the connection process, the integration
framework checks that the external system and the referenced enterprise service
are valid and enabled.

The procedure for establishing the initial connection varies, depending on the
service that is used for the transaction. The following table describes the available
methods and the connections that these methods use.

Method Connection procedure

HTTP or HTTPS Post
method

v Use the following URL for transactions that use an enterprise
service:

hostname:port/meaweb/es/extsysname/entservname

Where:

– extsysname is the name of the external system

– entservname is the name of the enterprise service

v Use the following URL for transactions that use an object
structure service:

hostname:port/meaweb/os/osname

Where osname is the name of the object structure service.

v Use the following URL for transactions that use a standard
service:

hostname:port/meaweb/ss/application service name

Where application service name is the name of the standard
service.

Integrating data with external applications 111

Method Connection procedure

EJB
v For enterprise service transactions, start an EJB from a Java

Platform, Enterprise Edition client by using the following code:

public byte{} processExternalDataSync(byte[] extData,
String serviceName, String sender)

The client can use the JNDI name of the Enterprise JavaBean,
ejb/maximo/remote/enterpriseservice, to look up the Enterprise
JavaBean reference and to start the method. The following
configurations are required on the Java Platform, Enterprise
Edition client:

v For object structure service transactions, start an EJB from a Java
Platform, Enterprise Edition client by using the following code:

public byte{} processMOS(byte[] reqmosData, String
mosName)

The client can use the JNDI name of the Enterprise JavaBean,
ejb/maximo/remote/mosservice, to look up the Enterprise
JavaBeans reference and to start the method. The following
configurations are required on the Java Platform, Enterprise
Edition client:

v For object structure service transactions, start an EJB from a Java
Platform, Enterprise Edition client by using the following code:

public byte{} action(byte[] actionData, String
maxServiceName)

The client can use the JNDI name of the Enterprise JavaBean,
ejb/maximo/remote/actionservice, to look up the Enterprise
JavaBean reference and to start the method. The following
configurations are required on the Java Platform, Enterprise
Edition client:

The following configurations are required on the Java Platform,
Enterprise Edition client:

v Access to the Home and Remote class files

v Access to the Java Platform, Enterprise Edition JAR files for the
server

v The URL of the server that hosts the Enterprise JavaBeans

v The class name of the context factory

The client code must instantiate the default IntialContext object.
The context derives the provider URL and the context factory from
the environment.

Web service Use the following URL for transactions that start a web service:

http://hostname:port/meaweb/services/web service name

where web service name is the name of a deployed web service.

Related concepts:
“REST API” on page 226
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli's process automation engine.

Processing sequences
The same processing sequence is applied to asynchronous and synchronous
messages that use an enterprise service. The processing sequences are different for
synchronous messages that use object structure or standard services.

112 Integrating Data With External Applications

Enterprise service processing sequences:

An enterprise service message processes through a number of layers to query and
update business object data. You can use these processing layers to customize and
control processing to satisfy the integration requirements with the external
application.

For asynchronous processing, the data can originate from the following exchange
methods:
v Interface tables
v HTTP Post of an XML message
v Starting a web service that is configured to use a JMS queue
v Starting an EJB
v Direct JMS connection
v Data import of a flat file or an XML file

For synchronous processing, the data can originate from the following exchange
methods:
v HTTP Post of an XML message (HTTP)
v Starting a web service that is configured to use a JMS queue
v Starting an EJB

The same processing sequence applies for asynchronous and synchronous
processing.

Enterprise service processing occurs in the following sequence:
1. The external system calls the enterprise service.
2. Custom processing can occur at several points during the processing of

enterprise services. You can run custom Java classes or automation scripts to
manipulate the message data or you can apply an XSL map. Custom processing
occurs in the following order:
a. If a preprocessing method is defined in a user exit class, this method is

applied first.
b. If an external exit class is specified, this processing is applied.
c. If a postprocessing method is defined in a user exit class, this method is

applied.
d. If an XSL map is specified for the enterprise service, the map is applied to

convert enterprise service format to object structure format.

At this point in the processing, the message must match the format of the
object structure that is associated with the enterprise service.

3. Object structure processing occurs in the following order:
a. You can run custom Java classes or automation scripts to manipulate data

during object structure processing.
b. If processing rules are configured for the object structure, these rules are run

next.
c. If processing rules result in the multiplication of data for sites or

organizations, the object structure message is duplicated for the additional
sites or organizations.

d. Objects are created and object processing starts.
4. Object processing occurs in the following order:

Integrating data with external applications 113

a. If a preprocessing method is defined in a user exit class, this method is
applied.

b. If an external exit class is specified, this processing is applied.
c. If a postprocessing method is defined in a user exit class, this method is

applied.
d. The business objects are processed, and data is saved to the database.

5. For synchronous transactions only, for Create, Update, Delete, and Sync
operations, the enterprise service provides a response to the starting application
that includes the following information:
v Indicates whether the message was processed successfully.
v The value of the internal ID column of the main object, regardless of whether

the column is part of the primary key of the main object.
v The values of the primary key fields of the main object.
v The values of any alternate key fields for the main object, which is

configured for the object or for the object structure.
6. For synchronous transactions only, for Query operations, the entire object

structure is returned. You can run custom Java classes or automation scripts to
manipulate the response data, or you can apply an XSL map.

Synchronous integration with an object structure service:

An object structure service is accessible by using HTTP Post, EJB, and web service
invocation methods to receive synchronous object structure service messages. The
operations Create, Update, Delete, Sync, and Query are supported.

Integration processing that is based on an object structure service occurs in the
following sequence:
1. The external system uses one of the following invocation methods to initiate

communication with the integration framework:
v HTTP invocation
v EJB invocation
v Web service invocation

2. The integration framework receives the inbound message that identifies the
object structure that is associated with the message

3. The integration framework builds the objects, based on the object structure and
the content of the inbound message.

4. The integration framework applies any predefined logic to the object structure.
5. Objects are processed and data is committed to the database if the message

contains an update operation, or the data is returned to the requester if the
message contains a query operation.

6. If a processing error occurs, the response with an error message is returned to
the caller of the service.

Synchronous integration with a standard service:

A standard service is accessible by using HTTP Post, EJB, and web service
invocation methods to receive synchronous standard service messages.

Integration processing that is based on a standard service occurs in the following
sequence:

114 Integrating Data With External Applications

1. The external system uses one of the following invocation methods to initiate
communication with the integration framework:
v HTTP invocation
v EJB invocation
v Web service invocation

2. The objects are passed to the system, and standard system processing is
applied.

Outbound data processing
Publish channels provide asynchronous processing of outbound messages that do
not require a response from the external system. For outbound messages that
require a response from the external system, you can use an invocation channel to
provide synchronous processing.

Asynchronous integration with a publish channel
The integration framework uses publish channels to process asynchronous
outbound messages. The sending of a publish channel message can be initiated by
an object event, or you can use the data export feature to send publish channel
messages on demand.

Publish channels are configured for an object structure and can enable event-based
integration when the main object of the object structure is updated. An update
occurs, for example, when a user saves a record in an application or completes a
stage in a workflow process. When the main object of an object structure is
updated, an event is initiated to all publish channels that are associated with the
object structure and are configured to listen for events. Users can use the data
export feature in the External Systems application to initiate publish channel
messages at any time.

When a publish channel message is initiated by an event or by data export, the
integration framework performs a sequence of tasks:
1. Identifies the object structure and the component objects that are associated

with the publish channel.
2. Constructs the object structure for the transaction and forms an XML message

that is based on the content of the objects.
3. Applies any processing rules that are defined in the Publish Channels

application.
4. If the publish channel is associated with multiple external systems, creates

copies of the object structure, one for each publish channel and external system
combination.

5. If any custom processing Java classes, automation scripts, or an XSL map are
associated with the publish channel, processes them in the following order:
a. Runs the event filter class, if one is provided.
b. Runs the preprocessing method in the user exit processing class, if one is

provided.
c. Runs a publish channel processing class, if one is provided.
d. ,
e. Runs the postprocessing method in the user exit class, if one is provided.
f. Applies an XSL map, if one is provided.

6. Writes the XML message to the outbound queue specified for the external
system.

Integrating data with external applications 115

7. A cron task picks up the publish channel message and delivers it to the
external system, which is based on the endpoint that is configured.

Publish channel processing overview:

The object structure that is configured for a publish channel provides the message
content of the channel. The external system determines how and where the
integration message is delivered. Within the publish channel layer there are
optional processing layers that support the transformation of message content and
the application of business rules.

Event-based integration:

A publish channel can initiate an integration message in response to the processing
of a system transaction, such as the update of an object.

You can configure publish channels to listen to events that occur on the primary
object of the related object structure by selecting the Enable Listener check box in
the Publish Channels application. When the main object of an object structure is
updated, a publish channel message sends the updated information to the external
system.

When an update to a child object initiates an update to the main object, this
information is also sent to the external system. However, some updates to a child
object do not initiate an update to the main object and, as a result, the updated
information is not sent to the external system. For example, if an object structure is
configured to support an attachment as a child object, when the user adds an
attachment, the external system is not notified of this event.

To propagate an event from a child object to the primary object of the object
structure, in the Object Structures application,you use the Advanced
Configurations action to configure event propagation. When you configure an
object structure to propagate events on child objects to the main object, the main
object then sends the updated information to the external system.

If you configure event propagation for an object structure, you must monitor
message activity carefully, because the configuration can initiate more messages
than the external system is designed to process. For child objects that have
embedded logic to update the parent object, this configuration has no impact in
terms of enabling or disabling the event propagation from the child to the parent
object.

Data export feature:

The publish channel supports batch processing of integration data by using the
data export feature.

You initiate the data export feature by running a SQL query on the primary object
of an object structure, and the number of records to send. If the query is successful,
the export starts.

You initiate the data export feature by providing a SQL WHERE clause on the
primary object of an object structure in the Data Export window. You can also
configure the number of records to send. If the query is successful, the export
starts and delivers the data based on the endpoint that is configured for the
publish channel.

116 Integrating Data With External Applications

Synchronous integration with an invocation channel
The integration framework uses invocation channels to process synchronous
outbound messages that require a confirmation or response content from the
external application. The export is started by an action class that calls the
invocation channel.

Sending an invocation channel message is initiated by an action Java class that is
coded to start the channel. Invocation channels are used, for example, to call an
external application to validate data, to start a process on an external application,
or to retrieve data. An invocation channel can be triggered by a user interface
control that is configured to call the action class that starts the channel.

When an invocation channel message is started by an action class, the integration
framework performs a sequence of tasks:
1. Identifies the object structure that is associated with each invocation channel

and identifies the component objects.
2. Constructs the object structure for the transaction and forms an XML message

that is based on the content of the objects.
3. If any custom processing Java classes, automation scripts, or an XSL map are

associated with the invocation channel request, processes them in the following
order:
a. Runs the preprocessing method in the request user exit processing class, if

one is provided.
b. Runs an invocation channel request processing class, if one is provided.
c. Runs the postprocessing method in the request user exit class, if one is

provided.
d. Applies an XSL map, if one is provided.

4. Writes the XML message to the destination that is specified by the endpoint.
5. The endpoint handler specifies the transport mechanism to use.
6. When the response is received from the end point, if any custom Java classes,

automation scripts, or XSL maps are associated with the response, processes
them in the following order:
a. Runs the preprocessing method in the response user exit processing class, if

one is provided.
b. Runs an invocation channel response processing class, if one is provided.
c. Runs the postprocessing method in the response user exit class, if one is

provided.
d. Applies an XSL map, if one is provided.

7. Objects are built from the data in the response object structure and are passed
to the system where standard processing is applied.

8. If all the objects that are created from the response object structure process
successfully, they are committed to the database.

The response content can be managed by the invoker based on integration
requirements, for example to update business object data or display the response to
a user. A default action class is provided that you can use or extend to implement
an invocation channel integration.

Integrating data with external applications 117

Customization of metadata properties in an invocation channel:

Within the external exit classes or the user exit classes of the invocation channel,
you can update additional data, such as the override values for the parameters that
are configured for an endpoint.

You can use this type of customization, for example, to derive an endpoint
parameter, such as the URL, from the data in the object structure of the invocation
channel. You can override the values for a number of metadata properties.

Value Description

ENDPOINT You can override this value to use a
provided endpoint in place of the endpoint
that is configured through the External
System.

ENDPOINTPROPS This value points to a hash map that can
contain one or more endpoint parameters
with a corresponding override value. If the
endpoint configuration defines that you
cannot override a property any override
value in the integration context is ignored.

TARGETOBJECT This value is the target object structure of
the invocation channel.

SOURCEOBJECT This value is the source object structure of
the invocation channel.

Configuring integration processing
Processing of integration messages occurs at several points during the movement
of integration messages for inbound and outbound transactions. When you
configure integration processing, you must ensure that source data and destination
data are in compatible data structures and formats.

Configuring asynchronous processing of inbound messages by
using enterprise services
Enterprise services use asynchronous processing for inbound messages that do not
require a response from Maximo Asset Management. To enable enterprise service
processing, you configure several integration components, including an object
structure, enterprise service, external system, and JMS cron task.

About this task

An external system initiates a connection and sends a message that includes the
names of the external system and the enterprise service. The external system
maintains the connection while the integration framework checks that the
enterprise service is enabled for this transaction. Valid transactions are placed into
the inbound sequential JMS queue, and the connection with the external system
ends. A cron task polls the JMS queue, forwards the message for enterprise service
processing, and sends the message onwards for object structure processing before it
is committed to the database.

Procedure
1. In the Object Structures application, identify a predefined object structure to

use or create one.

118 Integrating Data With External Applications

2. In the Enterprise Services application, identify a predefined enterprise service
to use or create one.

3. Configure the enterprise service to use your object structure and specify a valid
operation. The Query operation is not valid for asynchronous processing with
enterprise services.

4. In the External Systems application, identify an external system to use or create
one and configure it for your enterprise service:
a. Configure the external system to use inbound JMS queues and enable the

external system.
b. Configure the external system to use your enterprise service and enable the

service.
5. Optional: Configure the source for the integration message.

Message source Configurations

Messages from files by using a
cron task

In the Cron Task Setup application, set the data import
cron task to active.

Messages from a web service
call

In the Web Services Library application, create a web
service that is based on your enterprise service.

Messages from interface tables In the Cron Task Setup application, set the interface
table cron task to active.

6. Configure a queue to receive the integration messages.

Queue type Description

Continuous On the application server, configure message-driven
beans to consume queue messages.

Sequential In the Cron Task Setup application, set the JMS cron
task to active so that it can consume messages from the
queue.

Configuring asynchronous processing of outbound messages by
using publish channels
Publish channels process outbound integration messages that do not require a
response from the message destination. To enable publish channel processing, you
configure several integration components, including an object structure, publish
channel, external system, and cron task.

About this task

An object structure provides the message content to the publish channel. Publish
channel processing transforms the message, and the external system then forwards
it to its destination queue. A cron task polls the queue on a regular schedule and
delivers the message to its destination. Publish channel transactions can be
initiated by an event, such as a change to the status of an object, or by starting a
data export transaction in the External Systems application.

Procedure
1. In the Object Structures application, identify a predefined object structure to

use or create one.
2. In the Publish Channels application, identify a predefined publish channel to

use or create one.
3. Optional: To enable event-based integration, configure a listener for the event:

Integrating data with external applications 119

a. In the Publish Channels application, select the Enable Publish Channel
Listener action. If the listener is enabled, when the primary object of the
object structure is updated, publish channel transactions are initiated.

b. If you want events on child objects to start publish channel transactions, in
the Object Structures application, select the Advanced Configurations
action and configure event propagation.

4. Optional: In the Publish Channels application, review the processing rules and
add or change rules as necessary. Processing rules are run in the order
indicated in the Sequence field. If you change the sequence values, rules run in
a different order, which can have unintended results.

5. Optional: Specify any automation scripts , custom Java class files, or XSL maps
to provide custom logic during the transformation process.

6. In the External Systems application, add the publish channel to the external
system and specify the filepath to the outbound sequential JMS queue.

7. In the Cron Task Setup application, enable the SEQOUT instance of the
JMSQSEQCONSUMER cron task. The cron task delivers messages from the JMS
queue to their destinations in the same order as the messages are received into
the queue.

Rule-based customization
You can use processing rules to change the behavior of predefined integration
processing without writing Java classes, automation scripts, or XSL maps. You can
implement processing rules only on publish channels or on enterprise services.

Processing rules can access and evaluate the values in XML and object fields, object
sets, and integration and system controls. Processing rules also can change the
values in XML and object fields, or stop or skip processing all or part of a message.

Rule definitions for objects and records
An object structure consists of one or more object records. When an object is
created, the object fields are populated from the corresponding record fields before
standard application processing is applied.

During outbound processing, the original object is populated with the record fields
from the corresponding fields. Except for certain generic integration fields, system
objects are not updated in outbound messages.

Use the following guidelines to apply a rule to an object structure record or to an
object:
v For outbound processing, you can apply processing rules to object structure

records only.
v For inbound processing, you can apply processing rules to object structure

records or to objects.
– If an inbound rule changes the key field value of an object, apply rules to the

object structure record.
– If an inbound rule does not evaluate or manipulate an object or object set,

apply rules to the object structure record.
– If an inbound rule evaluates or manipulates a user-defined field, apply rules

to the object structure record.
– If an inbound rule evaluates or manipulates an object or object field, apply

rules to the object.

120 Integrating Data With External Applications

Apply all rules for enterprise services to either objects or to object structure
records. Avoid applying rules to both objects and object structure records. If you
apply processing rules to both object structures and objects, the processing time for
inbound transactions increases.

Processing rule definitions
A processing rule performs an action on a field in a record or object, or on the
record or object itself. To define a processing rule, in the service or channel used
for the transaction, you can specify the record or object to which the rule applies.

Processing rule initiation:

For an outbound transaction, a business object event on the primary object of an
object structure initiates a processing rule. For an inbound transaction, the event
that initiates a processing rule is identified by the value of the Action attribute on
the primary object of the inbound XML message.

When you configure publish channels and enterprise services, you specify which
events to use to initiate each processing rule. You can apply a processing rule to
the primary record, a child record, or an object, but the event that initiates the rule
must be initiated on the primary object.

You can, for example, implement a Stop rule on the PERSON object that prevents
users from changing any attribute on the person record by identifying that the rule
applies on update. With this configuration, users can create or delete person
records but users cannot update person records.

For outbound transactions, in the Publish Channels application you can configure
one or more of the following actions on the primary object to initiate the rule:
v Insert
v Delete
v Update

When an outbound message is generated using the Data Export feature or by a
programmatic call to the publish channel, all enabled processing rules are run,
regardless of the event settings.

For inbound transactions, in the Enterprise Services application you can configure
one or more of the following actions on the primary object to initiate the rule:
v Add
v Change or Replace (equivalent of Update)
v Delete

You can set one of these values as the Action attribute of the primary object for the
inbound transaction.

Processing rule actions:

A processing rule can act on an enterprise service or a publish channel as a whole.
For example, a rule can bypass a message, or it can manipulate the value in a data
field within the message.

Three processing rule actions act on a service or channel message: stop, skip, and
skip children. Four processing rule actions transform the value in a field within a
service or channel message: combine, split, set, and replace.

Integrating data with external applications 121

Message processing actions:

Message processing actions stop or skip an entire enterprise service or publish
channel message, or skip entire records within the message.

Skip action

The skip action bypasses a message that meets specified criteria. When a skip
action is applied to an inbound message, the message is not processed and is
cleared from the inbound queue. When a skip action is applied to an outbound
message, nothing is written to the queue and the message is not sent to an external
system. Skip processing does not generate an error, but the system log file is
updated with the rule that caused the skip action.

A skip action has some predefined rules. These rules look up integration control
values to ensure that outbound messages have a valid status before being sent to
the external system.

Stop action

The stop action halts the processing of a message that meets specified criteria. An
outbound message is rolled back and an error message is displayed. For inbound
transactions, the message remains in the inbound JMS queue. If the error was the
result of a synchronous invocation of the enterprise service, the calling program is
notified about the error.

Predefined rules are not provided with a stop action. This option is a utility for
users to customize the behavior of a service or channel.

When possible, use the skip action rather than the stop action for inbound
enterprise services. The stop action results in a processing error and the message
remains in the inbound queue or the initiator receives an error response. These
results do not occur when you use the skip action.

If a processing rule with a stop action is applied to a publish channel that is
generated by the Data Export feature, the stop action is treated as a skip action. If
the stop action evaluates as true, the message is skipped.

Skip children action

You can apply the skip children action only to outbound messages in a publish
channel. Apply the processing rule on the record or object whose child level
records are skipped.

If the person structure has the person object and child objects of phone and email,
you can use the skip children action on a person to strip the phone and email data
from the message. Use the skip children action when a status change occurs and
the external system does not need the accompanying phone and email information.

Skip record action

You can apply the skip record action only to outbound messages in a publish
channel. The skip record action deletes a record or object that contains your
applied rule. Apply the processing rule on the record or object, and all of child
records and objects, that you want to skip.

122 Integrating Data With External Applications

If the person object structure has a person object and a child object of phone, you
can use the skip record action to strip a specific phone record from the message.
Use the skip record action, for example, when you want to send the work phone
number but not the home phone number for a person. The skip record rule needs
a condition that identifies a home phone record to ensure that the record is
skipped.

Field transformation actions:

Apply the field transformation rule to a record or object that contains the field to
be transformed. A field transformation rule can be applied to a single field or
multiple fields in the selected record.

Set action

The set action writes a value to a specified data field. When you define the rule,
you specify the data to be set and the source of the new value. Indicate whether
the rule always writes the new value to the target field or writes the new value
only when the field is null (the default action). You can use this action to initialize
the value in a data field. If the rule always writes the new value to the target field,
any existing value in the field is overwritten.

The source can be one of the following values:
v A value integration control
v A hard-coded value
v A system control (in the MAXVARS database table)
v Another field in the specified record or object
v A field in a related object

Replace action

The replace action replaces a value in a data field with another value. When you
define the rule, specify the data field that you want to update. The control that you
use must be a cross-reference control. You specify the name of a cross-reference
control that contains the original and replacement values for the data field.

Use this action when the database and the external system use different identifiers
for the same entity. You can, for example, replace the SITEID value in a publish
channel with an external PLANTID value, and replace the external PLANTID
value in an enterprise service with the SITEID value.

Combine action

The combine action concatenates values from multiple source fields into a single
target field. When you define the rule, identify the target field and the source
fields and the sequence in which the source data is to be written. The source data
can be a data field or an integration control that contains a data value. You can
also specify an integration control that contains the delimiter to separate the
segments in the target field.

Use this action in an enterprise service processing rule when a mismatch exists
between the system definition and the external system definition of an entity. An
enterprise service processing rule can, for example, combine a vendor ID and a
vendor location field from an external system into the COMPANY field. A publish

Integrating data with external applications 123

channel processing rule can then use the split action to separate the combined field
into separate values when data is sent to the external system.

The source and target fields must be in the same object. This action always
overwrites the existing value in the target field. Ensure that the source and target
fields are alphanumeric fields, or processing errors may occur.

Split action

The split action is the reverse of the combine action. The split action separates the
value in one field into multiple fields. When you define the rule, you identify one
source field, one or more target fields, and how the rule processor identifies
segments of the source field.

The fields can have the following sources:
v A field in the selected record or object
v An integration control that contains the delimiter that separates the segments in

the source field

The source and target fields must exist in the same object. This action always
overwrites the existing value in the target fields. Ensure that the source and target
fields are alphanumeric fields, or processing errors might occur.

If you combined multiple fields in an inbound message, split the combined field
into individual fields in the outbound direction. There are two ways to identify
how to split the field. You can specify the length of each segment of the source
field, or you can identify a delimiter that separates the segments.

If the field length of each segment of source data is constant, the rule processor
breaks up the source field from left to right, based on the field length, sequence,
and values that you specify. For example, target field A with a character length of 6
holds positions 1-6 of the source field. Target field B with a character length of 3
holds positions 7-9 of the source field.

If the length of the source field segments is variable, but the source field contains a
distinct delimiter that identifies the segments, use the separator option. The
separator option identifies an integration control that defines the separator. The
same separator must delimit all the segments. The rule processor parses the source
field from left to right. The processor looks for the delimiter, breaks up the string
into multiple values, and moves each value into the designated target field.

Processing sequence:

Processing rules are applied sequentially for each record or object within an object
structure, starting with the primary object and moving down to the child objects.

If you define multiple processing rules for a single record or object, you can
modify the default processing sequence. Your modification is especially important
if a rule depends on the successful result of an earlier rule. If a rule with a stop or
skip action is successfully applied, no further checking occurs.

Conditions and evaluations
Processing rules are applied conditionally. Any conditions must be met before the
processing or action that is specified in the rule can be performed.

124 Integrating Data With External Applications

Conditions can involve evaluating or comparing XML field data, an object field, an
object set, or an integration or system control.

Condition specifications:

A condition is a grouping of one or more evaluations. Multiple conditions can be
specified, and their sequence is identified by the condition number.

Each evaluation returns a value of true or false. If an evaluation checks whether
the values of two fields are equal, for example, it returns a value of true if the
fields are equal and a value of false if they are not equal. Conditions also return a
value of true or false. If every evaluation within a condition is true, the condition
is true. If any evaluation within the condition is false, the condition is false. If a
processing rule contains multiple conditions, only one condition must be true for
the action that is associated with the processing rule.

Evaluation category specifications:

Before you define the specifics of an evaluation, select the type of data that must
be evaluated.

The following table describes the categories that you can use in your evaluations.

Category Use

XML field Evaluate a value in an integration object
record field, or compare the values in two
record fields.

Object field Evaluate the value in an object field, or
compare the values in two fields in the
related objects. The object field can be part
of the object structure definition. The object
field can also be part of an object that is
accessed in a relationship with an object in
the object structure definition.

Object set Check for the existence of records in a
related object.

Control Evaluate a value or boolean integration
control or a system control.

Because enterprise service processing rules are applied before objects are built, the
processing rules cannot evaluate object fields or object sets. You can use the
following combinations of categories, processing direction (outbound or inbound),
and record types (record or object) in your evaluations.

Direction of
processing rule

XML field
evaluation

Object field
evaluation

Object set
evaluation

Control
evaluation

Outbound Available Available Available Available

Inbound (record) Available Not available Not available Available

Inbound (Object) Available Available Available Available

Field to evaluate:

For XML field and object field evaluations, you specify the field that you evaluate.

Integrating data with external applications 125

For an object evaluation, you specify the object and the relationship to access the
field. If the field value is a derivative of the object, which matches the record, no
relationship is required.

Type of evaluation:

Evaluations generally involve the comparison of two values or a check for the
existence of an object set or a null value.

The user interface displays a subset of the types depending on the category of
evaluation (XML field, object field, object set, or control). The following table lists
the possible types of evaluations that you can use.

Type of evaluation Description

EQUALS The value in the specified field is equal to
the value of a second field (the comparison
field).

NOTEQUALS The value in the specified field is not equal
to the value of a second field (the
comparison field).

GREATER The value in the specified field is greater
than the value of a second field (the
comparison field).

GREATEROREQUAL The value in the specified field is greater
than or equal to the value of a second field
(the comparison field).

LESS The value in the specified field is less than
the value of a second field (the comparison
field).

LESSOREQUAL The value in the specified field is less than
or equal to the value of a second field (the
comparison field).

LIKE The value contains the expected value.

NOTLIKE The value does not contain the expected
value.

ISNULL The specified field contains no value or a
null value.

ISNOTNULL The specified field contains a value.

NONE This option is available only if the When to
Evaluate field is configured as Changed or
Not Changed. If NONE is selected, no
further evaluation is necessary.

EXISTS Records exist in the specified object set.

NOTEXISTS No records exist in the specified object set.

When to evaluate a field:

For XML field and object field evaluations, the processing rule first determines
whether to evaluate the specified data.

The system evaluates the data by checking the Evaluate When field, which can
have one the following values:

126 Integrating Data With External Applications

Value Action

CHANGED The evaluation continues only if the activity
that generated the message changes the
specified field.

NOT CHANGED The evaluation continues only if the activity
that generated the message does not change
the specified field.

ALWAYS The evaluation continues whether or not the
value of the activity that generated the
message (default) changes the specified field.
If you specify this option, you cannot
specify a comparison type of None.

When a record is updated, a changed attribute (changed=”1”) appears on the
corresponding field in the outbound message. This attribute determines whether
the field meets the criteria in the Evaluate When field.

This attribute does not appear in messages generated by the Data Export feature.
Evaluations that are applied when a value has changed, might not provide the
right output in a data export scenario.

The changed attribute does not apply to inbound messages.

Comparison field specifications:

The user interface displays subsets depending on the type of evaluation (XML
field, object field, object set, or control). If a processing rule uses one of the first
eight evaluation types, it must specify the field (comparison field) with which it is
making the comparison.

The following table lists the possible types of comparison fields that you can use in
the field comparisons. Comparison of an alphanumeric source field is case
sensitive.

Field Use

Integration control Compare the value in the specified field
with the values in a list or value integration
control. If a list control has multiple
matching values, the evaluation is true. The
true evaluation occurs only if the field value
matches any one of the values in the list
control.

Example: Validate the STATUS of a purchase
order. The current value in a STATUS field is
WAPPR and the possible acceptable values
that satisfy the condition are in a list control
called POSEND. The values in POSEND are
WAPPR, APPR, and CLOSE. If the
evaluation type is EQUALS, the evaluation
returns a true value.

Integrating data with external applications 127

Field Use

Value Compare the value in the specified field
with a predefined value. This option is
available for user-defined conditions.

Regardless of the locale setting of the
application server or the database, all
decimal fields must use a period (.) as the
decimal placeholder. Numbers to the left of
the placeholder are not formatted. This
format applies to inbound and outbound
data. For example, $1,738,593.64 must be in
the following format: 1738593.64.

Example: A processing rule compares the
value of the POLIN1 field with the value
SPARE. If the evaluation type is EQUALS
and the two values are the same, the
evaluation returns a true value.

MAXVAR Compare the value in the specified field
with the value in a system control (a value
in the MAXVARS database table).

Example: Evaluate the OWNERSYSID on
any enterprise service or publish channel to
determine if it is the same as
MAXVARS.MXSYSID.

Boolean Compare the value in the specified field
with a Boolean value (true or false).

Comparison field Compare the value in the specified field
with another field in the same object.

Example: Compare the GLDEBITACCT
value and GLCREDITACCT value on a PO
line or a journal entry to determine if they
are equal.

Object, relationship, and field Compare the value in the specified field
with a field in a different object.

Example: Check the OWNERSYSID of
inventory in the system for the
item-storeroom values on a receipt line or a
PO Line.

Integration controls
Integration controls give you the ability to configure the behavior of any enterprise
service or publish channel according to the requirements of individual
organizations and sites. Processing rules and Java classes can access integration
controls for evaluation purposes.

Integration controls are defined at the system level. You can assign controls to one
or more enterprise service and publish channel. The control values can be
configured at the external system level. Two external systems that process the same
enterprise service can share the same processing logic, class files, and processing
rules, yet they process the data differently because they use different control
settings.

128 Integrating Data With External Applications

Control levels:

All master data and documents are stored at the system level, organization level,
or site level. Item data is stored at the system level, accounting information at the
organization level, and work orders at the site level. An implied hierarchy exists
among these levels.

An integration control can be configured to override values at any of the following
levels:

Control value Description

System-level A system-level value applies to all system
organizations and sites. If the control is not
configured for organization-level or site-level
values, system processing uses the system
default. If the control is configured for
organization-level values, or site-level values
but none exists for a particular organization
or site, system processing uses the
system-level value.

Organization-level An organization-level value applies to all
system sites within an organization. If a
control is configured for organization-level
values but none exists for a particular
organization, system processing uses the
system-level value.

Site-level A site-level value applies to a specific site
within a system organization. If a control is
configured for site-level values but none
exists for a particular site, system processing
uses the organization value (if one exists) or
the system-level value.

Data that is processed by enterprise services or publish channels that use a control
with an organization or site override must be at the organization or site level.

Control types:

You can create four types of integration controls to meet your business needs.

Boolean controls

A boolean integration control specifies a value of 0 (false) or 1 (true).

List controls

A list integration control contains a list of values. You can enter multiple values for
the control and optionally assign a system domain to the control. Assigning a
domain ensures the validation of any value that is entered for that control, at any
level. If a domain is not assigned, there is no validation of the values that are
entered.

For example, work orders are sent to an external system only if the status of the
work order is APPR (approved) or COMPLETE. To determine whether to send the
work order, the Java code or the processing rule can check the status of a work
order against a list control that contains these two values.

Integrating data with external applications 129

Value controls

A value integration control contains a single value. You can enter a single value for
the control and optionally assign a system domain to the control.

Cross-reference controls

A cross-reference control replaces one value with another. In a publish channel, a
system value is converted to an external system value. In an enterprise service, an
external system value is converted to a system value. You can optionally assign a
system domain to a cross-reference control. If a domain is specified, any system
value that is specified for the control is validated against that domain. If a domain
is not assigned, there is no validation of the values that are entered.

Cross-reference controls must have a one-to-one mapping between the system
value and the external system value. If two system values are associated with an
external system value, or two external system values with a system value, a
processing error occurs.

If you create the cross-reference control to function as a multiplication control on
an enterprise service, one-to-many mappings can exist. A multiplication control is a
cross-reference control that copies, or multiples, an inbound message for multiple
organizations or sites. A multiplication control has one external value and multiple
system values.

Multiplication controls are always specific to the external system. You identify the
control as a multiplication control on the Enterprise Service tab in the Enterprise
Services application.

For example, the system sites correspond to external system business units, but the
two systems use different values for these entities. A cross-reference control can
perform the translation between the two values. A cross-reference control in an
enterprise service can translate business unit EX001 to system site MX001. In a
publish channel, the same control can translate MX001 to EX001.

Multiplication controls

A multiplication control can update the company in every organization in the
system database. For example, use a multiplication control to update the company
in every organization within the system. Value updates occur when the system
receives company data using an enterprise service.

New control creation:

Modifying control values at the external system level is generally sufficient to
customize predefined enterprise service or publish channel processing. If new
business rules are implemented or a new publish channel and enterprise service is
implemented, a new control might be needed.

Use the following guidelines when you create new controls:
v Control names must unique.
v To use the controls as part of a processing rule, and to set a value at the external

system level, associate controls with a publish channel or enterprise service.

130 Integrating Data With External Applications

v When you associate a publish channel or enterprise service to an external
system, all associated controls are copied to the external system level. You can
assign values at the external system level.

Configuring processing rules
You can configure processing rules for an object structure in the Publish Channels
application or in the Enterprise Services application.

Defining integration control or system control evaluations:

You can use a control evaluation to compare a value in a specified field with the
value in an integration control. You can also use a control evaluation to compare
the value in a specified field with a system control value (a MAXVARS value).

About this task

If you evaluate an integration control, it must be a Boolean or Value type control.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel record to which the evaluation applies.

2. On the Object Structure Sub-Records table window, select the object structure to
which the evaluation applies.

3. Perform one of the following actions:
v For an enterprise service, click Add/Modify Conditions on the Object

Structure Processing Rules tab or the Object Processing Rules tab.
v For a publish channel, click Add/Modify Conditions on the Processing Rules

for Sub-Record table window.
4. On the Conditions table window, click New Row.
5. In the Conditions field, enter a value. The condition value determines the order

in which the integration framework evaluates the conditions.
6. To compare the control value with a field value, select a one of the following

radio buttons and enter values in the appropriate fields.
v Integration Control

v MAXVAR

7. Enter values in the following fields:

Option Description

Evaluation Type Defines the type of evaluation that is
carried out on the XML field.

Value The value that is used in the control
evaluation.

8. Click OK.

Defining object field evaluations:

You can use an object field evaluation to evaluate the value of a field in any object
that is included in the definition of an object structure. You can also evaluate other
business objects that can be accessed by using a WHERE clause.

Integrating data with external applications 131

About this task

Regardless of the locale setting of the application server or the database, all
decimal fields must use a period (.) as the decimal placeholder. There is no
formatting of numbers to the left of the placeholder. This format applies to
inbound and outbound data. For example, $1,738,593.64 must be 1738593.64.

You can use an object field evaluation to perform the following evaluations:
v Check if the field is null or not null
v Compare the value in the object field with the value of an integration control or

a system control
v Compare the value in the object field with predefined value

If the data does not satisfy the comparison, the evaluation returns a false result. If
the data satisfies the comparison, the evaluation returns a true result.

Procedure

1. In the Publish Channels application, display the channel record to which the
evaluation applies.

2. In the Object Structure Sub-Records table window, select the object structure
to which the evaluation applies.

3. In the Processing Rules for Sub-Record table window, click Add/Modify
Conditions.

4. On the Conditions table window, click New Row.
5. In the Conditions field, enter a value. The condition value determines the

order in which the integration framework evaluates the conditions.
6. On the Object Field tab, click New Row.
7. Enter values in the following fields:

Option Description

Object The business object that contains the field
that is evaluated.

Object Relationship The relationship between the defined
business object and the rule business object.

Field The business object field that is evaluated.

Evaluation Type The type of evaluation that is carried out on
the business object field.

Evaluate When How often the evaluation is performed.

Enter a business object value only if it is not the in the business object on
which the rule is created.

8. To compare the value of the business object field with another value, select a
one of the following radio buttons and enter values in the appropriate field.
v Integration Control

v Value

v MAXVAR

9. Click OK.
10. Click Save Publish Channel.

132 Integrating Data With External Applications

Defining object set evaluations:

You use an object set evaluation to determine whether records exist in a
relationship between two business objects. If the relationship returns an business
object set, the evaluation returns a true result.

Procedure

1. In the Publish Channels application, display the channel record to which the
evaluation applies.

2. In the Object Structure Sub-Records table window, select the object structure to
which the evaluation applies.

3. In the Processing Rules for Sub-Record table window, click Add/Modify
Conditions.

4. On the Conditions table window, click New Row.
5. In the Conditions field, enter a value. The condition value determines the order

in which the integration framework evaluates the conditions.
6. On the Object Set tab, click New Row.
7. Enter values in the following fields:

Option Description

Object The business object that contains the field
that is evaluated.

Object Relationship The relationship between the defined
business object and the rule business object.

Evaluation Type The type of evaluation that is carried out on
the business object field.

8. Click OK.
9. Click Save Publish Channel.

Defining XML field evaluations:

You can use an XML field evaluation to evaluate a value in an object structure
sub-record. When you use an XML field evaluation, you can check whether a field
is null, and compare values in a business object field with an integration control, a
system value, or a predefined value.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel record to which the evaluation applies.

2. On the Object Structure Sub-Records table window, select the object structure to
which the evaluation applies.

3. Perform one of the following actions:
v For an enterprise service, click Add/Modify Conditions on the Object

Structure Processing Rules tab or the Object Processing Rules tab.
v For a publish channel, click Add/Modify Conditions on the Processing Rules

for Sub-Record table window.
4. On the Conditions table window, click New Row.
5. Optional: In the Conditions field, enter a value. The condition value

determines the order in which the integration framework evaluates the
conditions.

Integrating data with external applications 133

6. On the XML Field tab, click New Row.
7. Enter values in the following fields:

Option Description

Field The XML field that is evaluated.

Evaluation Type The type of evaluation that is carried out
on the XML field.

Evaluate When How often the evaluation is performed.

8. To compare the value of the XML field with another value, select a one of the
following radio buttons and enter values in the appropriate field.
v Integration Control

v Value

v MAXVAR

v Comparison Field

9. Click OK.

Defining processing rules:

You can define a processing rule to perform custom enterprise service and publish
channel processing. When you use a processing rule, you can perform custom
inbound and outbound processing without using a Java class.

Before you begin

Before you create a processing rule, you must consider defining:
v Whether an enterprise service or publish channel rule evaluates an XML field or

a business object field.
v The specific sub-record or business object on which the rule is defined.
v The actions that trigger the rule.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel to which the rule applies.

2. In the Object Structure Sub-Records table window, select the object structure
sub-record to which the rule applies.

3. For an enterprise service, perform one of the following actions:
v On the Object Structure Processing Rules tab, click New Row to define an

inbound processing rule on an object structure.
v On the Object Processing Rules tab, click New Row to define an inbound

processing rule on a business object.
4. For a publish channel, click New Row on Processing Rules for Sub-Record tab

to define an outbound processing rule on a business object.
5. In the Rule field, enter a rule identifier.
6. In the Action field, enter a value.
7. To change the order in which the application applies the processing rules for an

object, change the value in the Sequence field. The integration framework
applies the rules sequentially starting with the primary-level object.

8. Perform one or more of the following actions.
v Select or clear the Apply on Primary Object Insert check box.

134 Integrating Data With External Applications

v Select or clear the Apply on Primary Object Update check box.
v Select or clear the Apply on Primary Object Delete check box.

The noted settings determine whether the integration framework applies the
processing rule when a row is inserted, updated, or deleted on the primary
business object in the object structure.

9. Click Save Enterprise Service or Save Publish Channel.

Enabling processing rules:

You must enable a processing rule before the rule can be applied to enterprise
service or publish channel objects. An enabled processing rule indicates that it is
ready to perform custom inbound and outbound processing.

About this task

If you disable a predefined processing rule, it can cause integration framework
processing errors.

Procedure

1. In the Enterprise Services or Publish Channel application, display the service or
channel that contains the processing rule that you want to enable.

2. In the Object Structure Sub-Records table window, select the object to which the
rule applies.

3. Specify whether you want the processing rule to be enabled or disabled.

Option Enabled

Enabled Selected

Disabled Cleared

For the enterprise service, you can enable or disable the processing rule on the
Object Structure Processing Rules or Object Processing Rules tab. For the
publish channel,ing you can enable or disable the processing rule on the
Processing Rules for Sub-Record tab.

4. Click Save Enterprise Service or Save Publish Channel.

Adding controls:

Integration controls are used to configure the behavior of any enterprise service or
publish channel according to the requirements of individual organizations and
sites. Control types include Boolean controls, cross-reference controls, list controls,
and value controls.

Adding Boolean controls:

You can add a Boolean type control when you need an integration control that
specifies a value of true or false. An enterprise service or a publish channel can use
this Boolean control in its processing rule evaluations. The true or false value that
you assign to the control determines whether an enterprise service or publish
channel applies a processing rule on a transaction.

Procedure

1. In the Enterprise Services application, on the Select Action menu, select Create
Integration Controls.

2. Click Add New Control > Add New Boolean Control.

Integrating data with external applications 135

3. In the Integration Control field, enter the identifier for the Boolean control.
4. Specify whether you want the Boolean control to have a default value of true

or false.

Option Default True

True value Selected

False value Cleared

5. Click OK to close the Boolean Control dialog box.
6. Click OK to close theCreate Integration Controls dialog box.

Example

You can use a Boolean control to indicate whether enterprise services or publish
channels receive or send purchase order transactions. You can set a processing rule
action on an enterprise service or publish channel to skip a transaction. If the
default value that you assign to the Boolean control is true, and the processing rule
evaluation is true, the enterprise service or publish channel receive and send
purchase order transaction updates.

What to do next

You can associate an integration control with an enterprise service or publish
channel in the Enterprise Services or Publish Channels application. These
associations make the integration controls available for inbound and outbound
message processing. You can also associate an integration control to an external
system in the External Systems application. The value that you define on the
control at the external level overwrites the control value that is defined at the
enterprise service or publish channel level.

Adding cross-reference controls:

You add a cross-reference type control when you need an integration control to
replace one value with another. You can replace a value in inbound or outbound
messages and across multiple organizations or sites. A cross-reference control can
perform the translation between a value in the asset management system and a
value in the external system.

About this task

A publish channel uses a cross-reference control to convert an outbound asset
management system value to an external system value. An enterprise service uses
a cross-reference control to convert an inbound external system value to an asset
management system value. If you use synonyms, enter the external value as the
control value, not the internal application value. You must use a period (.) as the
decimal placeholder when you enter decimals as a control value. The numbers to
the left of the placeholder are not converted. For example, $1,738,593.64 must be
1738593.64.

Procedure

1. In the Enterprise Services or Publish Channels application, select the Create
Integration Controls action.

2. Click Add New Control > Add New XRef Control.
3. Enter values in the following fields:

136 Integrating Data With External Applications

Option Description

Integration Control The identifier for the value control.

Domain The domain that is used to check the
values that are entered for the integration
control.

4. In the Values table window, click New Row.
5. Enter values in the following fields:

Option Description

Default Value The value that is converted to or from an
external system value.

Default External Value The external system value that is
converted to or from the default value.

6. Click OK to close the Cross-Reference Control dialog box.
7. Click OK to close the Create Integration Controls dialog box.

Example

The asset management system sites correspond to external system business units,
but two external systems use different values for these entities. A cross-reference
control can perform the translation between the two mismatched values and the
asset management system value.

A cross-reference control in an enterprise service can translate the external system
site value EX001 to an asset management system site value MX001.

What to do next

You can associate an integration control with an enterprise service or publish
channel in the Enterprise Services or Publish Channels application. These
associations make the integration controls available for inbound and outbound
message processing. You can also associate an integration control to an external
system in the External Systems application. The value that you define on the
control at the external level overwrites the control value that is defined at the
enterprise service or publish channel level.

Adding list controls:

You create a list type integration control when you need a control that contains a
list of values. An enterprise service or publish channel can use this list control in
its processing rule evaluations. The rule could skip the processing of the
transaction when the data field value does not match any of the defined list control
values.

About this task

You must use a period (.) as the decimal placeholder when you enter decimals as a
control value. The numbers to the left of the placeholder are not converted. For
example, $1,738,593.64 must be 1738593.64.

Integrating data with external applications 137

Procedure

1. In the Enterprise Services application, on the Select Action menu, select Create
Integration Controls.

2. Click Add New Control > Add New List Control.
3. Enter values in the following fields:

Option Description

Integration Control The identifier for the value control.

Domain The domain that is used to check the
values that are entered for the integration
control.

4. In the Values table window, click New Row.
5. In the Default Value field, enter a value for evaluation.
6. Click OK to close the List Control dialog box.
7. Click OK to close the Create Integration Controls dialog box.

Example

Work orders are sent to an external system only if the status of the work order is
APPR (approved) or COMPLETE. The processing rule can check the status of a work
order against a list control that contains these two status values. If the status of a
work order does not match the two list control values, the work order transaction
is not sent to the external system.

What to do next

You can associate an integration control with an enterprise service or publish
channel in the Enterprise Services or Publish Channels application. These
associations make the integration controls available for inbound and outbound
message processing. You can also associate an integration control to an external
system in the External Systems application. The value that you define on the
control at the external level overwrites the control value that is defined at the
enterprise service or publish channel level.

Adding value controls:

You can create a value type integration control when you need a control that
contains a single value. An enterprise service or publish channel can use this value
control in its processing rule evaluations. The rule could skip the processing of the
transaction when the data field value does not match the defined control value.

About this task

You can provide a default control value and assign a domain to the control to
ensure the validation of any value that you enter for that control.

Procedure

1. From the Select Action menu in the Enterprise Services or Publish Channels
application, select Create Integration Controls.

2. Click Add New Control > Add New Value Control.
3. Enter values in the following fields:

138 Integrating Data With External Applications

Option Description

Integration Control The identifier for the value control.

Domain The domain that is used to check the
values that are entered for the integration
control.

Default Value The default value for the integration
control.

4. Click OK to close the Value Control dialog box.
5. Click OK to close the Create Integration Controls dialog box.

Example

Purchase orders are received by the asset management system only if the company
type value is EX. To determine whether the purchase order is received, the
processing rule can check the value of the company type against the value that is
defined in the control. If the EX company value does not match the value contained
in the control, the purchase order transaction is not sent to the asset management
system.

What to do next

You can associate an integration control with an enterprise service or publish
channel in the Enterprise Services or Publish Channels application. These
associations make the integration controls available for inbound and outbound
message processing. You can also set an integration control on an external system
in the External Systems application. The value that you define on the control at the
external system level overwrites the control value that is defined at the enterprise
service or publish channel level.

Associating integration controls to enterprise services or publish channels:

You can associate integration controls with an enterprise service or a publish
channel to make the control available for inbound and outbound message
processing. An enterprise service or a publish channel can have an association with
one or more integration controls.

About this task

When you associate an integration control to an enterprise service or a publish
channel, you can override the predefined values of the controls that are set at the
service or channel level. You can define integration controls globally and configure
the controls for each external system, according to the requirements of individual
organizations and sites.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel for which you want to associate an integration control.

2. Select the Associate Integration Controls action.
3. Perform one of the following actions:

Integrating data with external applications 139

Option Description

Select integration controls individually 1. Click New Row.

2. In the Integration Control field, enter a
control value.

Select multiple integration controls 1. Click Select Controls.

2. Select the appropriate controls.

3. Click OK.

4. Click OK to close the Associate Integration Controls dialog box.

Managing data in sub-record fields:

As part of an integration, you can work with the values in a single source data
field to set the value, combine the value, split the value, or replace the value.

Setting sub-record field values:

You can assign a value to a specified data field to overwrite the existing value in
the data field. You can indicate whether a value is always assigned or only
assigned when the target data field is null.

Before you begin

You must create a processing rule that contains a set action before you can set
sub-record field values.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel record to which the sub-record field set action applies.

2. On the Enterprise Service or Publish Channel tab, select the processing rule to
which the sub-record field set action applies.

3. Perform one of the following actions:
v For an enterprise service, click Sub-Record Fields on the Object Structure

Processing Rules tab or the Object Processing Rules tab.
v For a publish channel, click Sub-Record Fields on the Processing Rules for

Sub-Record table window.
4. Click New Row.
5. In the Field field, enter the name of the target data field. This value defines the

field that you want to replace.
6. Specify whether a value is always assigned or only assigned when the target

data field is null.

Option Replace When Null

Assign when data field is null Selected

Always assign Cleared

7. To specify the source field, select a one of the following radio buttons and enter
values in the appropriate fields:
v Integration Control

v MAXVAR

v Field

140 Integrating Data With External Applications

v Object

8. Click OK.

Combining sub-record field values:

You can combine the values in two or more source data fields or integration
controls into a single target data field. You can combine values when mismatches
occur between an asset management system value and the external system value.
For example, a two-part external system key can map to a single part key in the
asset management system.

Before you begin

You must create a processing rule that contains a combine action before you can
combine sub-record field values.

About this task

The source and target fields must be in the same object. This action always
overwrites the existing value in the target field. Ensure that the source and target
fields are alphanumeric fields, or processing errors may occur.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel record to which the sub-record field combine action applies.

2. On the Enterprise Service or Publish Channel tab, select the processing rule to
which the sub-record field combine action applies.

3. Perform one of the following actions:
v For an enterprise service, click Sub-Record Fields on the Object Structure

Processing Rules tab or the Object Processing Rules tab.
v For a publish channel, click Sub-Record Fields on the Processing Rules for

Sub-Record table window.
4. In the Target Sub-Record Fields table window, perform one of the following

actions:

Option Description

Select target fields individually 1. Click New Row.

2. In the Field field, enter a target data
field.

3. In the Separator Integration Control
field, enter a delimiter value that
separates the segments in the target field.

Select multiple target fields at one time 1. Click Select Field.

2. Select the appropriate fields.

3. Click OK.

4. In the Separator Integration Control
field, enter a delimiter value that
separates the segments in the target field.

5. In the Source Sub-Record Fields for Target table window, perform one of the
following actions:

Integrating data with external applications 141

Option Description

Select source fields individually 1. Click New Row.

2. Select a one of the following radio
buttons and enter values in the
appropriate fields:

v Field

v Integration Control

3. Enter a value in the Sequence field to
define the order in which the application
move segments of the source field to the
target fields.

Select multiple source fields at one time 1. Click Select Field.

2. Select the appropriate fields.

3. Click OK.

4. Enter a value in the Sequence field to
define the order in which the application
move segments of the source field to the
target fields.

6. Click OK.

Splitting sub-record field values:

You can split the value in a single source data field into multiple target fields. You
can split values when mismatches occur between an asset management system
value and the external system value. For example, a single part asset management
system key can map to a two-part key in the external system.

Before you begin

You must create a processing rule that contains a spit action before you can split
sub-record field values.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel record to which the sub-record field split action applies.

2. On the Enterprise Service or Publish Channel tab, select the processing rule to
which the sub-record field split action applies.

3. Perform one of the following actions:
v For an enterprise service, click Sub-Record Fields on the Object Structure

Processing Rules tab or the Object Processing Rules tab.
v For a publish channel, click Sub-Record Fields on the Processing Rules for

Sub-Record table window.
4. In the Target Sub-Record Fields table window, perform one of the following

actions:

142 Integrating Data With External Applications

Option Description

Select target fields individually 1. Click New Row.

2. In the Field field, enter a target data
field.

3. In the Separator Integration Control
field, enter a delimiter value that
separates the segments in the target
field.

Select multiple target fields at one time 1. Click Select Field.

2. Select the appropriate fields.

3. Click OK.

4. In the Separator Integration Control
field, enter a delimiter value that
separates the segments in the target
field.

5. In the Target Sub-Record Fields for Source table window, perform one of the
following actions:

Option Description

Select source fields individually 1. Click New Row.

2. In the Field field, enter the name of the
target field that receives the first or
next segment of the source data.

3. If you did not specify a value in the
Separator Integration Controlfield,
enter a number in the Field
Lengthfield.

4. Enter a value in the Sequence field to
define the order in which the
application move segments of the
source field to the target fields.

Select multiple source fields at one time 1. Click Select Field.

2. Select the appropriate fields.

3. Click OK.

4. If you did not specify a value in the
Separator Integration Controlfield,
enter a number in the Field
Lengthfield.

5. Enter a value in the Sequence field to
define the order in which the
application move segments of the
source field to the target fields.

6. Click OK.

Replacing sub-record field values:

You can replace a value in a data field with another value. You can replace a value
when the external system and the asset management system have different
identifiers for the same entity. For example, a plant identifier of an external system
can be translated to an asset management system site identifier.

Integrating data with external applications 143

Before you begin

You must create a processing rule that contains a replace action before you can
replace sub-record field values. You must also create a cross-reference control that
contains the original and new values for the data field.

Procedure

1. In the Enterprise Services or Publish Channels application, display the service
or channel record to which the sub-record field replace action applies.

2. On the Enterprise Service or Publish Channel tab, select the processing rule to
which the sub-record field replace action applies.

3. Perform one of the following actions:
v For an enterprise service, click Sub-Record Fields on the Object Structure

Processing Rules tab or the Object Processing Rules tab.
v For a publish channel, click Sub-Record Fields on the Processing Rules for

Sub-Record table window.
4. Click New Row.
5. In the Field field, enter the name of the target data field. This value defines the

field that you want to replace. The target field must be in the sub-record object
shown at the top of the dialog box.

6. In the Integration Control field, enter the name of the cross-reference type
control that contains the original and new values for the target field.

7. Click OK.

Code-based customization
The integration framework provides placeholders in transaction flows where you
can insert your own code to provide logic that customizes transaction processing.
You can insert Java classes or automation scripts at selected points in the
processing of object structures, publish channels, enterprise services, and
invocation channels. You can also use XSL maps to transform messages.

When you create or update a Java class file, you must rebuild and redeploy the
application EAR file before integration components can use it. You can write a
script in one of the supported scripting languages in the Automation Scripts
application, or you can import a script that you created externally, and you can
activate it for immediate use. When you create or update an XSL map, you can
either store it in the application EAR file or in a directory on your file system.

When the customization code is configured for use, the integration framework calls
the code at the appropriate point during transaction processing.

You can download sample Java classes or XSL files from the IBM Tivoli Open
Process Automation Library (OPAL).

Customization Java classes and methods
You can extend the standard processing of outbound and inbound messages by
using Java classes. Multiple placeholders exist in message processing flows where
you can insert custom Java code to affect message content or processing or both.

External exit classes:

External exit classes provide a base class, ExternalExit, that you can extend to
customize publish channel, enterprise service, and invocation channel processing.

144 Integrating Data With External Applications

For outbound messages, the input to the external exit class is the irData element of
the XML message. The output of the class processing is the erData element of the
XML message that is delivered to the target destination. For inbound messages, the
input to the external exit class is the erData element of the inbound message. The
output is the irData element that is delivered to the related object structure for
processing into Maximo Asset Management.

To use an external exit class for customization, specify your Java class in the
Processing Class field in the Publish Channels application or in the Invocation
Channels application.

An alternative approach to integration customization is to implement a user exit
class. If an adapter for Oracle or SAP is installed, predefined processing classes are
provided, and customizations must be done by using the user exit class. When no
predefined processing classes exist, you can choose whether to implement custom
code in the external exit class or the user exit class.

User exit classes:

For inbound and outbound transactions on a publish channel, an enterprise
service, or an invocation channel, a user exit class can have a preprocessor method
and a postprocessor method. For inbound transactions, the user exit class can have
an extra method that processes business objects just before they are committed to
the database.

Preprocessing method for outbound transactions:

The input to the first outbound user exit point is the XML that is generated by the
object structure. If you have an ERP adapter processing class, you can use either
the preprocessing method or postprocessing method to implement your custom
logic, depending upon your requirement.

By using the preprocessing exit point, you can change data in the message which
later alters the processing logic of a processing class when it is implemented.

Outbound message customization can be done in the preprocessor method, by
using the following method:
public StructureData setUserValueOut(StructureData irData)

This method can perform the following processing:
v Validate data.
v Change system data by changing the IR record that is sent to the external

system.
v Stop the message from being sent out of Maximo Asset Management by

throwing a system exception. The entire message is rolled back. If the message is
initiated by an event, the entire message is also rolled back, including any
changes that you make in an application.

v Stop the message from being sent to the external system by throwing a
SKIP_TRANSACTION exception.

v Log the transaction.

Integrating data with external applications 145

Postprocessing method for outbound transactions:

In the postprocessing method of the user exit, the IR element from the object
structure and the ER element from the XML output of the processing class are both
available for processing.

Use the following method to customize outbound messages.
public StructureData setUserValueOut(StructureData irData, StructureData erData)

The method can perform the following processes:
v Validate data.
v Change data by changing the ER record that is sent to the external system.
v Map additional data from the irData element to the erData element.
v Stop the transaction from being sent out of Maximo Asset Management by

throwing a system exception. The entire message is rolled back. If the message is
initiated by an event,the entire message is also rolled back, including any
changes that you make in an application.

v Stop the message from being sent to the external system by throwing a
SKIP_TRANSACTION exception.

v Log the transaction.

You identify the publish channel user exit class in the Publish Channels
application.

Preprocessing method for inbound transactions:

In the preprocessing method for inbound transactions, the input is the XML
message that is delivered from the external system. If necessary, you can change
data in the message to affect the processing logic in the processing class.

Inbound transaction customization can be done in the first exit by using the
following method:
public StructureData setUserValueIn(StructureData erData)

This method can perform the following processing:
v Validate data.
v Change external data by changing the ER record before it is mapped to the IR

record and saved in the system.
v Stop further processing of the transaction by throwing an exception. For

queue-based messages, the transaction remains in the queue to be reprocessed.
For messages that are not queue-based, the messages are returned to the client
that started the enterprise service.

v Stop the message from being processed into Maximo Asset Management by
throwing a SKIP_TRANSACTION exception. In this case, the message is not
saved in the system. For queue-based messages, the message is removed from
the queue.

v Log the transaction.

Postprocessing method for inbound transactions:

In the postprocessing method for inbound transactions, both the IR records and ER
records are available for processing.

146 Integrating Data With External Applications

Inbound transaction customization can be done in the postprocessing flow by
using the following method:
public StructureData setUserValueIn(StructureData irData, StructureData erData)

The method can perform the following processes:
v Validate data.
v Change external data by changing IR record to be saved in the system.
v Map additional data from the ER record to the IR record.
v Stop further processing of the transaction by throwing an exception. For

queue-based messages, the transaction remains in the queue for reprocessing.
For messages that are not queue-based, the messages are returned to the client
that started the enterprise service.

v Stop the message from being processed into Maximo Asset Management by
throwing a skip_transaction exception. In this case, the message is not saved in
the system. For queue-based messages, the message is removed from the queue.

v Log the transaction.

You identify the enterprise service user exit class in the Enterprise Services
application.

Business object processing on inbound transactions:

The user exit class on an enterprise service has an additional method,
setUserMboIn, that enables custom processing at the point when the business
objects are created from object structure XML, but are not yet saved to the
database.

This user exit is called after the system processing and can run on the objects that
are created in the system by using the following method:
public void setUserMboIn(MboRemote mbo)

The object parameter is a reference to a primary object in the object structure.

This method is called once for the primary object. For an XML transaction with
multiple nouns, the object exit is called once for each noun.

The method can perform the following processes:
v Validate data.
v Stop the transaction from being saved in the system by throwing a system

exception. For queue-based messages, the transaction remains in the queue and
is retried.

v Log the transaction.

You identify the user exit class in the Enterprise Services application.

Event filter classes:

For outbound asynchronous transactions that use publish channels, you can run a
custom Java class or an automation script by using an event filter class. The
processing for an event filter class occurs before the serialization of data in the
object structure layer for an outbound message. The event filter class can insert
logic that affects the creation of the integration message at this processing point.

Integrating data with external applications 147

A common use of the event filter class is to include logic that removes unwanted
fields or objects from a message to reduce the amount of data in the serialization
process. Another common use of the class is to override default recursion logic that
prevents an event from an inbound integration from sending an outbound
integration message. Overriding the default behavior in this scenario can allow an
outbound message to be initiated from an event that is triggered by an inbound
message.

Handler exit classes:

Multiple predefined methods, or handlers, are provided so that you can send data
to an external system, including HTTP, an enterprise Java bean call, and interface
tables. Some of these methods have user exit placeholders that are available for
customization.

Enterprise bean processing user exit class:

You can use an exit placeholder for class customization when transactions are sent
to an external system by an enterprise bean. This exit class is optional and is called
before the enterprise bean is called.

The implementation of this Java class must resolve the method signature of the
enterprise bean that is started by this handler and the parameters that the method
requires. If no value is specified for this property, the system applies a default exit
called DefaultEJBExit. This default exit attempts to resolve the enterprise bean
method signature and parameters.

This class must implement the psdi.iface.router.EJBExit interface and the
following methods:
v The getClassParams() method returns the method signature in the form of an

array of Java classes:
public Class[] getClassParams()

v The getObjectParams method returns an array of the parameters of the
enterprise beans as an array of Java objects:
public Object[] getObjectParams(byte[] data, String interfaceName, String
destinationName)

v After the successful invocation of the enterprise bean, the responseOk() method
is called with an object as the response of the invocation:
public void responseOk(Object response)throws MXException

v If an error is encountered during the enterprise bean invocation, the
responseError() method is called with the originating exception as a parameter:
public void responseError(Exception e) throws MXException

You enter the fully qualified name of the Java class in the EJBEXIT property of the
endpoint that implements the enterprise bean handler.

HTTP processing user exit class:

When you send outbound transactions to an external system by using HTTP, you
can use an HTTP exit placeholder for customization. This exit class is optional and
is called as part of the response from the HTTP call.

The HTTP processing exit class runs when a response is returned to an HTTP Post
from an external system. In the default implementation of the

148 Integrating Data With External Applications

psdi.iface.router.DefaultHTTPExit class, the response code that is received from
the external system is compared to a range of response codes. The range that is
used by the default implementation is 200 - 299. If the code is outside that range,
then the transaction was not delivered to the external system, and an exception is
raised.

With some external systems, the response from an HTTP call is interpreted to see
whether the external system accepted the message. The interpretation logic can be
implemented in the HTTP exit class.

If the publish channel message is not accepted, the code must raise an exception.
The message in the outbound queue is marked as an error and is not removed
from the queue. If the message is accepted, the message is removed from the
outbound queue. If the invocation channel message fails, the exception is returned
to the invoker of the channel, and the invoker handles the exception according to
the design requirements.

The HTTP processing exit class must implement the psdi.iface.router.HTTPExit
interface and implement the following method:

public void processResponseData(int responseCode, String responseMsg,
byte[] msgBodyData)

If necessary, this class can interpret the response code and throw an exception. The
class can perform the following actions:
v Check the response code from the HTTP post.
v If the response code is in the error range, the exception is logged on the ERROR

level, and a system exception is thrown.
v If the response code is valid, the transaction is logged on the DEBUG level.

You must specify the fully qualified name of the Java class in the HTTPEXIT
property of the endpoint that implements the HTTP handler.

JMS processing user exit class:

When you send transactions from the system to an external system by using JMS,
you can use an exit placeholder for customization. This exit class is optional and is
called before the JMS is called.

This class must implement the psdi.iface.router.JMSExit class and the following
method:

public Map getMessageProperties(Map metaData, (byte[] data, Map
origProps)throws MXException

This method can perform the following processes:
v Change the properties of the JMS message
v Split the data to multiple properties, to match the JMS message

You enter the fully qualified name of the Java class in the JMSEXIT property of the
endpoint that implements the JMS handler.

Integrating data with external applications 149

Web service processing user exit class:

You can use an exit placeholder for customization when you send transactions
from the system to an external system by using a web service. This exit class is
optional and is called before the web service is started.

This class must implement the psdi.iface.router.WSExit interface and the
following methods:

getServiceName() method
The getServiceName() method returns the service name of the web service
to start:

public String getServiceName(Map metaData, String endpointURL,
String serviceName, String interfaceName, String targetNameSpace)
throws MXException

getEndpointURL() method
The getEndpointURL() method returns the endpoint URL of the web
service to start:

public String getEndpointURL(Map metaData, String endpointURL,
String serviceName, String interfaceName, String targetNameSpace)
throws MXException

responseOk() method
The responseOk() method is called after a successful invocation of the
external web service.

public void responseOk(org.w3c.dom.Document response) throws
MXException

responseError() method
If an error is encountered during the web service invocation, the
responseError() method is called with the originating exception as a
parameter:

public void responseError(Exception e) throws MXException

getOneWayWsInfo() method
The getOneWayWsInfo() method returns a Boolean value that specifies
whether the web service to start is one way:

public boolean getOneWayWsInfo(Map metaData, String endpointURL,
String serviceName, String interfaceName, String targetNameSpace,
boolean oneWayWs) throws MXException

getSoapAction() method
The getSoapAction() method returns the SOAPAction HTTP header to use
to start the web service:

public String getSoapAction(Map metaData, String endpointURL, String
serviceName, String interfaceName, String targetNameSpace, String
soapAction) throws MXException

You must specify the fully qualified name of the Java class in the WSEXIT property
of the endpoint that implements the web service handler.

The psdi.iface.router.DefaultWSExit class is a default implementation of the
WSExit interface. This class overrides the getEndpointURL() method to concatenate
the service name at the end of endpoint URL to form the new endpoint URL.

150 Integrating Data With External Applications

Customization with automation scripts
You can use automation scripts in place of Java classes to extend the main Java
processing classes for predefined integration components. You can use automation
scripts to apply custom logic at various points during the processing of object
structures, publish channels, enterprise services, and invocation channels.

You define automation scripts for integration by using the Automation Scripts
application. Defining a script for integration identifies which integration
component the script is associated with and at what point in the processing flow
that the script runs. To test scripts, you can set the log level to debug, activate the
script, and use the data import or data export feature to initiate an integration
transaction.

Creating automation scripts for integration:

An automation script can customize the processing of integration messages for
inbound and outbound transactions. You associate an automation script with an
integration component, and you configure when to insert it into integration
processing.

Procedure

1. In the Automation Scripts application, select the Create > Script for Integration
action.

2. Specify an integration component to associate with the automation script and
then specify the insertion point for the script.

3. Optional: Select the Activate check box if you want the script to be
immediately active.

4. Optional: Specify the logging level to apply when the script executes. For
testing purposes, if you set the logging level to debug, the logs contain useful
information that helps you troubleshoot any issues.

5. Specify the scripting language of the script.
6. Either enter the script directly into the Source Code field or browse to the

location where the script is stored and click Import.
7. Click Create.

Customization of object structure processing with automation scripts:

Object structure processing supports the simultaneous use of automation scripts
and Java classes for customization. Automation scripts that are defined for an
object structure can affect the processing of data that is directly processed through
the object structure, such as the REST API, or through other integration
components such as publish channels and enterprise services.

Insertion points for customization of object structure processing with automation scripts:

You can insert script-based processing into the Java definition classes and Java
processing classes that transform object structures during integration processing.

The illustration shows the insertion of automation scripts during the inbound and
outbound processing of object structures.

Integrating data with external applications 151

Integration
components

- Publish channels
- Enterprise services
- Invocation channels
- REST and OSLC APIs
- Web services
- Web service interactions
- Application import
and export

- Migration manager

Integration targets
and sources

- Files (such as
spreadsheets)

- Maximo applications
- External systems

Maximo Asset Management

Outbound processing

Inbound processing

Maximo Integration Framework

B
u
s
in

e
s
s

O
b
je

c
ts

Object structures

Outbound processing

Java
definition

class

Automation
script

Inbound processing

Java
processing

class

Automation
script

Outbound object structure processing implements a Java definition class that
allows for the insertion of custom processing during the serialization of business
object data into an XML message. You can also implement an automation script to
customize the processing of the object structure. The integration framework
supports the customization of an object structure to be a Java class, an automation
script, or both simultaneously.

Inbound object structure processing implements a Java processing class that allows
for insertion of custom processing of data from the inbound XML message before it
is mapped to the business object data. In addition to the Java processing class, you
can implement an automation script to customize the processing in the object
structure.

Outbound processing of object structures:

Outbound object structure processing performs the serialization of business object
(mbo) data into an XML message. During this processing, an automation script can
insert custom processing logic to change the default processing behavior of the
object structure. The script can be used instead of the Java definition class or can
be used with it.

Functions, such as skipMbo(ctx), are used in serialization. In the function name, ctx
is the object in the function that is prepared by the integration framework and
communicates data between the integration framework and the automation script.
An automation script can affect the processing of the data and communicate those
changes back to the integration framework.

152 Integrating Data With External Applications

Serialization includes the following functions that can be used by automation
scripts to insert customized logic into the processing of the data:

skipMbo(ctx)
Filters object data from the XML message. APIs are available to filter data
from the XML message, continue processing for data that you want in the
XML message, and complete processing of the object structure after data is
filtered out. For example, if the object structure is constructing an XML
message for a purchase order, an automation script can insert logic that
filters out purchase order line data where the line type is for service lines.

skipCols(ctx)
Filters a column or multiple columns from the object structure. For
example, if the object structure is constructing an XML message for an
asset, an automation script can insert logic that filters out a number of
columns that are not needed by the system that will receive the XML
message.

overrideValues(ctx)
Sets the value of an object structure field in the XML message. For
example, if the object structure is constructing an XML message for an
asset, an automation script CAN insert logic that might filter out a number
of columns that are not needed by the system that will receive the XML
message that is created.

Functions for outbound processing of object structures:

The skipMBO(c), skipCols(ctx), and overrideValues(ctx) functions are used in
automation scripts for outbound processing of object structures. Each function has
its own APIs that are available to process the data in the object structure. All
example scripts are written in Jython.

Skip processing of business objects by using the skipMbo(ctx) function:

The skipMbo(ctx) function filters data from the XML message that is built during
the serialization process. The skipMbo(ctx) function can filter a Maximo business
object, continue processing the message after a business object is skipped, or
terminate the processing of the message at the point of execution.

ctx.skipMbo() API

The ctx.skipMbo() API filters out the processing of any Maximo business objects in
the XML message.

For example, the following script executes on the ctx.skipMbo() API, and filters out
all purchase order lines and their related purchase order cost data for the 1234
purchase order line.
def skipMbo(ctx):
if ctx.getMboName()=='POLINE' and ctx.getMbo().getString("itemnum")=="1234":
ctx.skipMbo()

If you use the ctx.skipMbo() API on the root or primary object in the object
structure, any business object that meets the criteria in the IF statement is filtered
from the XML message.

Integrating data with external applications 153

ctx.process() API

The ctx.process() API continues processing lines that are not filtered out by the
ctx.skipMbo() API, for example:
def skipMbo(ctx):
if ctx.getMboName()=='POLINE' and ctx.getMbo().getString("itemnum")=="1234":
ctx.skipMbo()
else
ctx.process()

Executing the ctx.process() API on a row of data enables that data to be serialized.
If the Java definition class skips that row of data, the ctx.process() API overrides
the Java definition class and allows the data to be serialized.

ctx.complete() API

When the ctx.complete() API is invoked, the outbound processing of the object
structure is stopped for the current instance of the business object, for instances of
the child business objects, and for instances of its peer-level business objects.

For example, the PO object consists of the child objects POLINE and POTERM. The
POLINE object consists of a child object POCOST. When the ctx.complete() API is
invoked on the PO object, the POLINE, POTERM, and POCOST objects that are
related to that PO are not processed.

In the following example script, any purchase order that has a status of complete is
processed without the serialization of its purchase order line data.
def skipMbo(ctx):
if ctx.getMboName()=='PO' and ctx.getMbo().getString("status")=="COMPLETE":
ctx.complete()
else
ctx.process()

Skip processing of columns in business objects by using the skipCols(ctx) function:

The skipCols(ctx) function filters the columns of a Maximo business object from
the processing of the XML message. The ctx.skipCol(String) API can accept one
string argument to filter a single column or multiple comma-separated string
arguments to filter multiple columns.

The ctx.skipCol(String) API can filter a single column of a Maximo business object.
The following example script filters out the description column of the ASSET
object:
def skipCols(ctx):

if ctx.getMboName()==’ASSET’:
ctx.skipCol("description")

You can also use the ctx.skipCol(String) API to filter multiple columns. The
following example script filters out the description and the asset number columns
of the ASSET object:
def skipCols(ctx):

if ctx.getMboName()==’ASSET’:
ctx.skipCol("description",”assetnum”)

The ctx.skipCol(String) API can filter the column of a child object in an object
structure. For example, the following script filters out the METERNAME column of
the ASSETMETER object:

154 Integrating Data With External Applications

def skipCols(ctx):
if ctx.getMboName()==’ASSETMETER’:

ctx.skipCol("metername”)

You can also use the ctx.skipCol(String) API to filter columns based on a specified
value. For example, the following script filters out the description column when
the assettag attribute has a value of 12593:
def skipCols(ctx):

if ctx.getMboName()==’ASSET’ and ctx.getMbo().getString("assettag")=="12593":
ctx.skipCol("description")

Set values in fields by using the overrideValues(ctx) function:

The overrideValues(ctx) function sets the value of a field in the XML message.

The ctx.overrideCol() API sets the value of the field in the XML message. For
example, the following script sets the value of the site ID to ABC:
def overrideValues(ctx):

if ctx.getMboName()==’ASSET’:
ctx.overrideCol("SITEID","ABC")

In the following example script, if the description field of a purchase order is
empty, the description field is set to the purchase order number:
def overrideValues(ctx):
if ctx.getMboName()=='PO':
mbo = ctx.getMbo()
if mbo.isNull("description"):
ctx.overrideCol("DESCRIPTION",mbo.getString("ponum"))

Java definition classes and automation scripts:

You can use a Java definition class and an automation script at the same time on
an object structure. The Java definition class is executed before the automation
script for each function.

Some of the object structures that are included in the integration framework and
Migration Manager provide Java definition classes that filter data. For example, the
item object structure filters items that are of the type TOOL. When an automation
script is implemented with a Java definition class, the automation script can
override the filtering of the Java definition class and remove the filtering of the
Java class or change the filtering criteria to exclude more data from or include
more data in the XML message.

For example, the Java definition class of the MXOPERLOC object structure filters
out the locations of the type LABOR while allowing locations of the type
OPERATING to be included in the message. You can change the filtering, add
more filtering, or replace the default filtering. The following example script
changes the processing to filter the locations of the type OPERATING and
continues to process locations of the type LABOR:
def skipMbo(ctx):

if ctx.getMboName()==’LOCATIONS’:
if ctx.getMbo().getString("type")=="LABOR":

ctx.process()
if ctx.getMbo().getString("type")=="OPERATING":

ctx.skipMbo()

Integrating data with external applications 155

The following example script adds more filtering for the MXOPERLOC object
structure by filtering out type COURIER:

if ctx.getMboName()==’LOCATIONS’:
if ctx.getMbo().getString("type")=="COURIER":

ctx.skipMbo()

The following example script replaces the definition class filtering so that only
locations of type COURIER are filtered out:
def skipMbo(ctx):

if ctx.getMboName()==’LOCATIONS’:
if ctx.getMbo().getString("type")=="COURIER":

ctx.skipMbo()
else:

ctx.process()

Inbound processing of object structures:

The processing of inbound messages by the integration framework supports the
use of automation scripts on the object structure to support custom logic. This use
of automation scripts allows customization for any inbound integration message
that uses an object structure and for customization of processing Migration
Manager data.

For integration processing, a script that is implemented on the object structure
applies to messages from the following sources:
v Data import
v REST
v Application import
v Web service
v OSLC
v Integration servlet
v Integration tables

The object structure supports a Java processing class or an automation script. You
can use a Java processing class, an automation script, or both on the same object
structure. The processing supports functions that are in either the class file or the
automation script.

A context (ctx) is passed between the processing class of the inbound object
structure and the automation script, which implements the custom code. The
context is supported bidirectionally. Predefined APIs are available for the context.
The script framework provides a built-in Java class that prepares a context.

All of the following code examples and fragments use JavaScript. You can
implement the logic at the following points in the processing:
v Before the processing of a Maximo business object. For example, the

beforeProcess(ctx) function is processed once for each noun in the inbound
message before business objects that are related to the message are created.

v During the processing of a Maximo business object. For example, the
beforeCreateMboSet(ctx) function is processed sequentially for each object within
every noun in the inbound message. Other functions that are processed
sequentially include afterCreateMboSet(ctx), mboRules(ctx), beforeMboData(ctx),
and afterMboData(ctx).

156 Integrating Data With External Applications

v After Maximo business object processing completes. For example, the
preSaveRules(ctx) and changeStatus(ctx) functions are processed once for each
noun in the inbound message after the business objects are created.

In the Automation Scripts application, you can create a script for integration to
include in the object structure processing.

Functions for inbound processing of object structures:

Each function provides APIs that you can use to customize the processing of the
data in the object structure.

Skip or change message processing by using the beforeProcess(ctx) function:

The beforeProcess(ctx) function provides an injection point to run the logic in the
automation script before business objects are created.

For example, you can skip the processing of a message that is based on the
evaluation of the data in the XML message. Another example is to change the
action attribute for the message from Sync to Create.

The following JavaScript example sets the message action to Sync:
function beforeProcess(ctx)
{

ctx.setMsgType("Sync");
}

Create business object sets by using the beforeCreateMboSet(ctx) function:

The beforeCreateMBOSet(ctx) function processes inbound data before the
framework creates the Maximo business objects or business object sets and can
operate on all business objects in the object structure.

If an automation script that is processing an object structure creates a business
object set, then the createMboSet() function in the base class is skipped. Processing
of a child business object supports access to the parent object by using the
getParentMbo() function.

You can also use the beforeCreateMboSet(ctx) function to conditionally create the
business object that is based on the data that is included in the XML message.

You cannot create a child business object that is independent of its parent business
object.

The following example shows how to create a child business object from a parent
business object.
importPackage(Packages.psdi.server);
function beforeCreateMboSet(ctx)
{
var struc=ctx.getData();
var ponum=struc.getCurrentData("PO",ctx.getUserInfo();
var siteid=struc.getCurrentData("SITEID");
var poSet = MXServer.getMXServer().getMboSet("PO",ctx.getUserInfo());
poSet.setQbeExactMatch(true);
poSet.setQbe("ponum",ponum);
poSet.setQbe("siteid",siteid);

Integrating data with external applications 157

var poMbo = poSet.moveFirst();
var polineSet = poMbo.getMboSet("POLINE");
ctx.setMboSet(polineSet);
}

Change business objects or business object sets by using the afterCreateMboSet(ctx)
function:

The afterCreateMboSet(ctx) function processes the inbound object structure after
the framework creates the Maximo business object or business object set.

The afterCreateMboSet(ctx) function is available to operate on all business objects
in the object structure. This function can change the business object or business
object set that the framework created or can inject more business objects into the
business object set.

The following example sets an MboSet property to note that the created location
has a type of Storeroom. This logic replaces the default logic that is in the
MXSTORELOC processing class.
importPackage(Packages.psdi.server);
function afterCreateMboSet(ctx)
{

var loc type = MXServer.getMXServer().getMaximoDD().getTranslator()
.toInternalString("LOCTYPE",ctx.getData().getCurrentData("TYPE"));

if (loc Type=="STOREROOM")
{

ctx.getPrimaryMboSet().setStoreroom();
}

else
{

ctx.getPrimaryMboSet().setNonStoreroom();
}

}

Change processing of rules by using the mboRules(ctx) function:

The mboRules(ctx) function can skip the processing of a business object, skip a
transaction, continue processing, or create a business object. This function operates
before the creation of each Maximo business object.

The following example shows how to skip a transaction:
function mboRules(ctx)
{

ctx.skipTxn();
}

Set values in fields by using the beforeMboData(ctx) function:

The beforeMboData(ctx) function is available when the Maximo business object is
created but before the values in the business object are set by the integration
framework. Processing of the object structure can change the setting of business
object data. Processing can also set flags on the fields, such as the
samevaluevalidation flag, which triggers field validations even when the field
value is set with the current value of the field.

Add business objects and change values in fields by using the afterMboData(ctx)
function:

The afterMboData(ctx) function implements custom logic to create an extra related
Maximo business object for inclusion in the transaction or change data in a

158 Integrating Data With External Applications

Maximo business object. The function is available after the business object is
created and the values are set in the Maximo business object by the integration
framework.

When columns in the object structure are restricted, you can use the
afterMboData(ctx) function to provide the logic to set those columns instead of
having the integration framework set the values.

In the following example, an asset is created with the description field set to a
concatenation of the EXTERNALREFID field and the description field that is passed
from the object structure:
importPackage(Packages.psdi.server);
importPackage(Packages.psdi.mbo);
function afterMboData(ctx)
{

var mbo = ctx.getMbo();
var struc = ctx.getData();
mbo.setValue("description", "FROM: "+struc.getCurrentData("EXTERNALREFID")+ " DESC: "+struc.getCurrentData("DESCRIPTION"));

}

Change the transaction before saving to the database by using the preSaveRules(ctx)
function:

The preSaveRules(ctx) function allows for extra processing that is related to the
transaction as a whole. You can use the preSaveRules(ctx) function to create a
related object and add it to the transaction. The function is called before the Save
action and is called for each noun in the message.

Change status or status date by using the changeStatus(ctx) function:

The changeStatus(ctx) function implements a status change outside the
statefulMicSetIn class that is available in the integration framework. You can also
use this function to set the status date with a value instead of using the system
date.

For the automation script to use the changeStatus(ctx) function, the
statefulMicSetin class or the class that extends the statefulMicSetin class must be
registered as the processing class in the object structure. You can use this function
to support a status change for five parameters. The base class supports only three
parameters.

The following example sets the memo field that is related to the change status
action to a string value if the NP_STATUSMEMO field does not contain a value:
importPackage(Packages.psdi.server);
importPackage(Packages.psdi.mbo);

function changeStatus(ctx)
{

var mbo = ctx.getMbo();
var struc = ctx.getData();
var stat = struc.getCurrentData("STATUS");
var memo = struc.getCurrentData("NP_STATUSMEMO");
if(struc.isCurrentDataNull("NP_STATUSMEMO"))
{

memo = "Status change via Integration";
}
mbo.changeStatus(stat, MXServer.getMXServer().getDate(), memo, MboCon-stants.NOACCESSCHECK);

}

Integrating data with external applications 159

Context APIs for the inbound processing of object structures:

A context (ctx) is an object that provides convenience methods for automation
scripts to pass data or trigger actions. The context is supported bidirectionally.
Predefined APIs are available for the context, and each function can use different
contexts.

An automation script requires context methods to implement processing logic. A
context is passed between the processing of the object structure and the
automation script, which implements the custom code. The following table shows
the context APIs and the common usage of the APIs for each of the functions:

Table 28. Context APIs as used by the functions

Context APIs
beforeProcess

(ctx)
beforeCreateMBOSet

(ctx)
afterCreateMboSet

(ctx)
mboRules

(ctx)
beforeMboData

(ctx)
afterMboData

(ctx)
preSaveRules

(ctx)
changeStatus

(ctx)

ctx.setMsgType() U

ctx.getProcessTable() U U U U U

ctx.setProcessTable(String
ProcessTable)

U

ctx.setMboSet(MboSet mboSet) U

ctx.setMbo(Mbo mbo) U

ctx.getData() U U U U U U U U

ctx.getMosDetailInfo() U U U U U U U

ctx.setSkipBaseAdditionalRules() U

ctx.skipMbo() U

ctx.skipTxn() U U U U U U U U

ctx.complete() U

ctx.process() U

ctx.getUserInfo() U U U U U U U U

ctx.getParentMbo() U U U U U

ctx.isPrimary() U U U U U U U

ctx.bypassMbo() U

ctx.getMsgType() U U U U U U U U

ctx.getPrimaryMboSet() U U U U U U

ctx.getPrimaryMbo() U U U U

ctx.processAsUpdate() U

ctx.processAsAdd() U

ctx.processAsAddAtEnd() U

ctx.log () U U U U U U U U

The following APIs are available for inbound data processing:

ctx.getMosDetailInfo()
Provides information about the data dictionary cache for the integration
framework for the object structure that is being processed.

ctx.skipMbo()
Skips the processing of a Maximo business object.

ctx.skipTxn()
Skips the processing of an entire transaction, such as a message.

ctx.complete()
Ends the processing of the object structure at the point of execution, which
means that child data is not processed.

ctx.process()
Continues the processing at the point of execution. This API is typically
used as part of conditional logic.

ctx.getParentMbo()
Retrieves the parent business object. This API can be used from a child
object whose business object is not yet created.

160 Integrating Data With External Applications

ctx.isPrimary()
Identifies whether the current business object is the root-level business
object of the object structure.

ctx.getUserInfo()
Retrieves user information, which is needed if a script is creating a new
business object.

ctx.bypassMbo()
Bypasses the creation of the business object and continues to the next
business object that is being processed.

ctx.getMsgType()
Provides access to the message type, such as Sync or Create.

ctx.setMsgType()
Sets the message type, such as Sync or Create. This API can be used before
processing begins.

ctx.getData()
Provides access to the StructureData, which is the XML message.

ctx.setMboSet(MboSet mboSet)
Sets values in a business object set.

ctx.setMbo(Mbo mbo)
Sets values in a business object.

ctx. getPrimaryMboSet()
Retrieves the root business object of an object structure during the
processing of a child business object.

ctx.setProcessTable(String processTable)
Sets the table for a process. The method is used if you have a nonpersistent
business object, such as MXRECEIPT, that has processing logic to
determine whether the MATRECTRANS table or the SERVRECTRANS
table is updated. The ctx.setProcessTable(String processTable) API is used
in the beforeProcess(ctx) function.

ctx.getProcessTable()
Retrieves the table name that is set by the ctx.setProcessTable(String
processTable) API.

ctx.setSkipBaseAdditionalRules()
Adds custom logic to in the preSaveRules(ctx) function to operate on a
completed object structure that is now prepared in the processing.

ctx.processAsUpdate()
Sets the processing action of a business object to the Update action instead
of the Add or Delete action.

ctx.processAsAdd()
Sets the processing action of a business object to the Add action instead of
the Update or Delete action.

ctx.processAsAddAtEnd()
Sets the processing action of a business object to the Add action instead of
the Update or Delete action and creates the business object at the end of
the collection instead of at the top of the collection.

ctx.log ()
Runs a log statement from an object structure processing context.

Integrating data with external applications 161

Customization of channel and service processing by using automation scripts:

When you create an automation script, you identify the channel or service that the
script runs on. You also specify where to insert the script during the processing
flow.

Customization points during publish channel processing:

Publish channels process outbound integration messages that do not require a
response. The Java processing class that is associated with a publish channel
includes several hooks where you can insert code to provide custom logic.

The illustration shows the customization points during outbound processing of
integration messages by using publish channels.

Outbound processing

Maximo Asset Management

Maximo Integration Framework

B
u

s
in

e
s
s

O
b

je
c
ts

Object structures

Outbound processing

Java
definition

class

Automation
script

JMS Queue

Integration targets

- Files (such as
spreadsheets)

- External systems

Publish Channels

Java user
exit class
(before
method)

Automation
script

Java
processing

class

Automation
script

Java user
exit class

(after
method)

Automation
script

Java
event filter

class

Automation
script

After object structure processing constructs the integration message, it is forwarded
to the associated publish channel. You can add custom logic at the following points
during publish channel processing:
v External exit class
v User exit class that runs before the external exit class
v User exit class that runs after the external exit class
v Event filter class

The message is then sent to the JMS queue for delivery to the target destination.

162 Integrating Data With External Applications

When you configure an external exit or user exit script for a publish channel, a
predefined Java class is inserted on the channel that is used to run the script. The
predefined classes are the com.ibm.tivoli.maximo.script.ScriptExternalExit class and
the com.ibm.tivoli.maximo.script.ScriptUserExit class. You cannot implement a
script and a Java class at the same processing point. If you attempt to create a
script on a processing point where a Java class is configured, you cannot save the
script.

Customization points during enterprise service processing:

Enterprise services provide asynchronous and synchronous processing of inbound
integration messages. You can insert code to provide custom logic to the Java
request processing class for inbound processing and to the Java response
processing class for outbound processing.

The illustration shows the customization points during the inbound and outbound
processing of integration messages by using enterprise services.

Outbound processing

Inbound processing

Maximo Asset Management

Maximo Integration Framework

B
u
s
in

e
s
s

O
b
je

c
ts

Object structures

Outbound processing

Java
definition

class

Automation
script

Inbound processing

Java
processing

class

Automation
script

Enterprise service responses

Java user exit class
(before method)

Java processing
class

Java user exit class
(after method)

Automation script

Automation script

Automation script

Enterprise service requests

Java user exit class
(before method)

Java processing
class

Java user exit class
(after method)

Automation script

Automation script

Automation script

External Client

Start (transaction initiation)

For asynchronous messages that do not require a response, an external service
opens a connection to send an enterprise service request. When the request is
validated, the message is dropped into a JMS queue for enterprise services
processing. For synchronous messages that require a response, the external service
maintains a continuous connection during the transaction until the response is
received.

In the Automation Scripts application, when you configure an automation script
for an enterprise service, you specify one of the following insertion points for the
script:
v Insertion points for inbound asynchronous processing:

Integrating data with external applications 163

– Request, inbound: User exit class that runs before the external exit class
– Request, inbound: External exit class
– Request, inbound: User exit class that runs after the external class

v Insertion points for inbound synchronous processing, where a response is
required:
– Request, inbound: User exit class that runs before the external exit class
– Request, inbound: External exit class
– Request, inbound: User exit class that runs after the external class
– Response, outbound: User exit class that runs before the external exit class
– Response, outbound: External exit class
– Response, outbound: User exit class that runs after the external class

When you configure an external exit or user exit script for the request or the
response of an external service, a predefined Java class is inserted that runs the
script. The predefined classes are the
com.ibm.tivoli.maximo.script.ScriptExternalExit class and the
com.ibm.tivoli.maximo.script.ScriptUserExit class. You cannot implement a script
and a Java class at the same processing point. If you attempt to create a script on a
processing point where a Java class is configured, you cannot save the script.

Customization points during invocation channel processing:

Invocation channels process outbound integration messages that require a
response. The invocation channel request class and the invocation channel response
class include several hooks where you can insert code to provide custom logic.

The illustration shows the customization points during inbound and outbound
processing of integration messages by using invocation channels.

164 Integrating Data With External Applications

Maximo Asset Management

Maximo Integration Framework

B
u

s
in

e
s
s

O
b

je
c
ts

Object structures

Outbound processing

Java
definition

class

Automation
script

Inbound processing

Java
processing

class

Automation
script

External Services

Invocation channel requests

Java user exit class
(before method)

Java processing
class

Java user exit class
(after method)

Automation script

Automation script

Automation script

Invocation channel responses

Java user exit class
(before method)

Java processing
class

Java user exit class
(after method)

Automation script

Automation script

Automation script

Outbound processing

Inbound processing

Start (transaction initiation)

When a user action in Maximo Asset Management starts an outbound integration
transaction that requires a response, an invocation channel provides integration
processing of requests and responses.

In the Automation Scripts application, when you configure an automation script
for an invocation channel, you specify one of the following insertion points for the
script:
v Request, outbound: User exit class that runs before the external exit class
v Request, outbound: External exit class
v Request, outbound: User exit class that runs after the external exit class
v Response, inbound: User exit class that runs before the external exit class
v Response, inbound: External exit class
v Response, inbound: User exit class that runs after the external exit class

When you configure an external exit or user exit script for the request or the
response of an invocation channel, a predefined Java class is inserted that runs the
script. The predefined classes are the
com.ibm.tivoli.maximo.script.ScriptExternalExit class and the
com.ibm.tivoli.maximo.script.ScriptUserExit class. You cannot implement a script
and a Java class at the same processing point. If you attempt to create a script on a
processing point where a Java class is configured, you cannot save the script.

Examples of using automation scripts during processing by channels and services:

Channel and service processing takes a data record from the source system as an
input value, manipulates the data as required, and constructs a data record for the
target system. The example python scripts query input data and provide logic to
manipulate the data before the output data is constructed.

Integrating data with external applications 165

When Maximo Asset Management starts an integration transaction, the object
structure provides an internal record data (irData) element to a publish channel or
an invocation channel. Processing manipulates the irData element and constructs
an external record data (erData) element before the message is forwarded to its
destination. Invocation channel transactions can require a response from the
external system. Response processing passes the erData element to the invocation
channel, which manipulates the response data and constructs the irData element.

When an external system starts an integration transaction, the message provides an
erData element to an enterprise service. Processing manipulates the erData element
and constructs an irData element before the message is forwarded to the associated
object structure. For messages that require a response, the object structure provides
the irData element to the enterprise service. Processing manipulates the data and
constructs the erData element that is forwarded to its destination.

The examples consist of simple scripts that can be used for test purposes. You can
use the data import and data export features in the External Systems application to
start transactions to test scripts.

Example: Script that changes the description of operating assets on outbound
transactions

In this scenario, the MXASSET object structure provides irData to the MYASSET
publish channel for processing. An automation script is configured to run on the
external exit class of the publish channel. The script checks the status of the asset
in the irData element. If the asset is in operating status, the script inserts a value in
the description field and prints a message to the log file. The erData element is
then constructed and is forwarded to the external system.
if irData.getCurrentData("STATUS") == ’OPERATING’ :

irData.setCurrentData("DESCRIPTION","hello")
print "MYASSET description change"

Example: Script that changes the description of operating assets on inbound
transactions

In this example, the MYASSET enterprise service processes an inbound message for
the MXASSET object structure. An automation script inserts a script on the external
exit class of the enterprise service. The script checks the status of the asset in the
erData element. If the asset is in operating status, the script inserts a value in the
description field and prints a message to the log file. The irData element is then
constructed and is forwarded to the associated object structure for processing.
if erData.getCurrentData("STATUS") == ’OPERATING’:

erData.setCurrentData("DESCRIPTION","hello inbound")
print "MYASSET inbound description has changed"

Example: Script that changes the description of lines on a purchase order by
using an automation script variable

In this example, the MXPO object structure provides the irData element to the
MYPO publish channel for processing. An automation script is configured to run
on the external exit class of the publish channel. A literal value, world, is defined
as an input variable on the automation script. The script queries the irData element
for purchase orders that contain purchase order lines. The script numbers each
purchase order line in a sequence that starts at 1, sets hello as the value in the

166 Integrating Data With External Applications

description field, and adds the input variable from the automation script. The
script updates the parent purchase order before the erData element is constructed
and forwarded to the external system.
lines = irData.getChildrenData("POLINE")
i = 0
if lines is not None:

for value in lines:
++i
irData.setAsCurrent(lines,i);
irData.setCurrentData("DESCRIPTION","hello"+world)

irData.setParentAsCurrent()

Example: Script that skips transactions based on the status of records

In this example, the MXPO object structure is sent to the MYPO2 publish channel
for processing. An automation script is configured to run on the user exit class
before the external exit class runs. The script queries the irData element for
purchase orders with a status of WAPPR and skips the processing of these
purchase orders.
if irData.getCurrentData("STATUS") == ’WAPPR’ :

errorgroup = "iface"
errorkey ="SKIP_TRANSACTION"

Example: Script that prints transaction information to a log file to assist with
troubleshooting

In this example, the MXASSET object structure provides irData to the MYASSET2
publish channel for processing. An automation script is configured to run on the
external exit class. The script queries the irData element for assets with a status of
operating, prints transaction information to a log file, and constructs the erData
element without making any changes. To print information about the transaction,
you must set logging to debug. In the Logging application, the logger is set to
automation scripts and the logging level is set to DEBUG. In the Automation
Scripts application, the logging level for the script is set to DEBUG.
if irData.getCurrentData("STATUS") == ’OPERATING’ :

print "Test script
variable VAR_EXIT_IFACETYPE " + ifaceTypeprint "Test script
variable VAR_EXIT_IFACENAME " + ifaceNameprint "Test script
variable VAR_EXIT_EXTSYSTEM " + extSystemprint "Test script
variable VAR_EXIT_MESSAGETYPE " + messageTypeprint "Test script
variable VAR_EXIT_EXTSYSTEM " + extSystemprint "Test script
variable VAR_EXIT_OSNAME " + osNameprint "Test script

When an asset is exported, the following debugging information is printed to a log
file:
18 Mar 2014 11:35:06:877 [DEBUG] [MXServer] [CID-MXSCRIPT-2022] execution completed
for cached compiled script PUBLISH.MYASSET.EXTEXIT.OUT for launch point null
Test script variable VAR_EXIT_IFACETYPE MAXIMO
Test script variable VAR_EXIT_IFACENAME MYASSET2
Test script variable VAR_EXIT_EXTSYSTEM MYEXTSYS
Test script variable VAR_EXIT_MESSAGETYPE Publish
Test script variable VAR_EXIT_OSNAME MXASSET

XSL mapping
For outbound transactions, you can implement an XSL file to manipulate the data
that is sent to the external system after Java exit processing is completed. For
inbound transactions, you can implement an XSL file to manipulate the data to be
set to the object structure after Java exit processing is completed.

Integrating data with external applications 167

The XSL file is always called with the XML message that is output from the Java
exit processing. You can register the XSL file in the application EAR file under the
businessobjects/classes/ directory or you can reference it using a directory
filepath that is not part of the application EAR file.

Omit the .xsl file extension to register the file in the businessobjects/classes/
psd/iface/xsl directory, for example:
psdi.iface.xsl.mapping

Include the .xsl file extension to register the file in a file directory that is
accessible by the application server, for example:
c:/psdi/iface/xsl/mapping.xsl

Interface table user exit class
When you use interface tables to receive messages from an external system, you
can perform customization in the polling program that retrieves the data from the
interface table and sends data to the system.

The cron task manager runs the interface table polling program. The
IFACETABLECONSUMER cron task, has an optional EXITCLASS property where
you can specify the fully qualified name of a Java exit class.

The Java data structure list represents the record from the interface tables, where
the first element is always the action of the message. The remaining elements of
the list are the mapped data structures and each map represents a row in the
interface table for each message. The keys in the map are the column names and
the values are the corresponding column values. All the column values are
converted to their translated string format before they are set in the map.

The EXITCLASS class must implement the psdi.iface.intertables.IfaceTbExit
interface and the following methods:
v public void beforeQueue(long transid, String extSys, String ifaceName,

List data, Connection conn)

This method is called after the data is received from the interface table and
before the data is inserted into one of the inbound queues.

v public void afterCommit(long transid, String extSys, String ifaceName,
Connection conn)

This method is called after the data is inserted to an inbound queue and deleted
from the interface queue table, and the database commit is done.

v public void afterRollback(long transid, String extSys, String ifaceName,
Connection conn)

This method is similar to the afterCommit method but is called if the transaction
is rolled back.

This class can perform the following processes:
v Validate data.
v Change external data by changing the IR record to be saved in the system.
v Stop the transaction from being saved in the queue by throwing an exception. In

this case, the transaction remains in the MXIN_INTER_TRANS table with the
error message and is reprocessed.

v Stop the message from being sent to external system by throwing a
skip_transaction exception. In this case, message the system does not save the
message; the message is removed from the queue.

168 Integrating Data With External Applications

v Log the transaction

The user exit that uses the afterCommit or afterRollback method can perform the
following processes:
v Perform custom processing and cleanup.
v Log the transaction.

You identify this class in the Cron Task Setup application.

Configuring the integration framework
Setting up the integration framework includes configuring related system
properties, JMS queues, and security. Implementing integration scenarios requires a
knowledge of configuring JMS queues on the application server and knowledge of
J2EE and product security support.

Integration system properties
System properties define the behavior and characteristics of the integration
framework. To review or change integration framework properties, filter for the
properties in the System Properties application.

General integration properties

To see a list of general integration properties, specify mxe.int as a filter term in the
System Properties application. For Boolean properties (true/false), a value of 0
means false, and a value of 1 means true.

Table 29. General integration properties

Property Description Default value

mxe.int.containerdeploy Deploy web services to the application server
container. When set to 0 (false), web services are
deployed to the product container.

0

mxe.int.credentialmapperclassname Credential mapper classname is a class file that can be
used for mapping credential information when an
integration module is implemented.

mxe.int.genboolasbool Generate Boolean as schema Boolean. 1

mxe.int.globaldir Specifies the Integration Global Directory. 1

mxe.int.queueusercachesize Number of users that are cached for inbound queue
messages.

10

mxe.int.resolveschema Resolves all schema includes to contain inline schema
definition.

1

mxe.int.servicedeployer Web services deployer class is a custom Java class for
web service deployment when the default deployer
class is not used.

mxe.int.uddiinqurl Represents the integration UDDI registry inquiry
URL.

mxe.int.uddiname Represents the integration UDDI registry user ID.

mxe.int.uddipassword Integration UDDI registry password.

mxe.int.uddipuburl Integration UDDI registry publish URL.

Integrating data with external applications 169

Table 29. General integration properties (continued)

Property Description Default value

mxe.int.validatedbupdates Validates the database updates completed by
integration. When set to 1 (true), the deletion of
business objects, attributes, indexes, and relationships
by a user through the Database configuration
application are validated against integration content.
The validation ensures that the data that is deleted is
not referenced by an integration component. If a
reference exists, the user is not able to complete the
delete action.

1

mxe.int.validatemmpackage Validates the Migration Manager database updates by
integration.

0

mxe.int.verifywebappurl Verifies web application URL when schema files are
generating.

1

mxe.int.webappurl Represents the integration web application URL.
Configure this property to contain the correct host
name and port number.

http://localhost:9998/meaweb

mxe.int.wsdlcurrentschema Shows the current schema definition in WSDL. 1

mxe.int.wsdlincludesschema Includes the schema directly in the WSDL. 1

mxe.int.wsdlnamespace Represents the integration WSDL namespace. http://www.ibm.com/maximo/wsdl

mxe.int.xmlnamespace Represents the integration XML namespace. http://www.ibm.com/maximo

mxe.int.binarytext Converts a text value to base 64 encoded value. 10

mxe.int.defaultaction The default action for flat file import. AddChange

mxe.int.defaultoperation The default operation for the application export. Sync

mxe.int.dfltuser Represents the Integration default login user. mxintadm

mxe.int.doclink.maxfilesize Represents the maximum file size (MB) for
attachments that are included as part of an integration
message.

10

mxe.int.enabledatemillis Enables the dates with milliseconds part. 0

mxe.int.expupdatesender Updates the SENDERSYSID field on the primary
object during data export.

0

mxe.int.extracttrycount The File Extract Retry Count is the number of times
an error message is retried during data import when
using file-based error management.

0

mxe.int.flatfiledelimiter Integration flat file text delimiter is the default
delimiter value that is used for application import
enablement and for data import.

,

mxe.int.flatfilenewline Retains new line character in flat files. For fields, such
as descriptions, that can contain new line characters,
the characters are retained in the integration messages
when the property value is 1 (true).

0

mxe.int.interactiveimport Performs the application import as interactive. 0

mxe.int.keyresponse Provides response content for inbound integration
messages for all operations. When set to 1 (true),
response content, that includes the primary object key
values, is provided for all service operations. When
set to 0 (false), response content is provided for Query
and Create operations only.

1

mxe.int.maxextractdocs Represents the number of error documents that are
written to each temporary file when an extract file is
building .

1000

mxe.int.mdbdelay Represents the wait time in milliseconds before a
message from the error queue is processed.

-1

170 Integrating Data With External Applications

Table 29. General integration properties (continued)

Property Description Default value

mxe.int.propagateuser Propagate authenticated user through the inbound
queue. When set to 1 (true), the user of the integration
message is saved with the queue message and used
during the processing of the message because it is
processed from the queue to the business objects.

0

mxe.int.savemessage Indicates the save JMS message. 0

mxe.int.setclobasaln Controls the truncation of characters that are sent to
interface tables.

0

mxe.int.textqualifier The flat file text qualifier is the default text qualifier
value in application import enablement and in data
import.

"

mxe.int.updatecoafromglcomp Updates the Chart of Accounts that contain an
identified component. When set to 1 (true), processing
of inbound GL component data initiates related
updates to any chart of account data that references
the GL component.

1

mxe.int.usescientific Uses scientific notation for double values. 1

mxe.int.validatexmltext Validates XML element value for invalid XML
characters. When set to 1 (true), an outbound message
is validated to ensure that all data in the message
uses valid XML characters. If messages contains
invalid characters, the operation stops and no
outbound message is delivered.

0

mxe.int.whereclausepolicy Sets the where-clause policy for an integration query. parse

mxe.int.adminfromemail The email address FROM integration administration,
which is used as the From email address when
integration initiates an email. Must be a valid email
address format, such as from@example.com.

mxe.int.admintoemail The email address TO integration administration,
which is used as the To email address when
integration initiates an email. Must be a valid email
address format, such as to@example.com. You can
provide more than one email address in a
comma-separated list.

Table 30. General integration properties.
Property Description Default value Who can edit property?

mxe.int.containerdeploy
Deploy web services to the application server
container. When set to 0 (false), web services are
deployed to the product container.

0 Global administrator

mxe.int.credentialmapperclassname
Credential mapper classname is a class file that
can be used for mapping credential information
when an integration module is implemented.

Global administrator

mxe.int.genboolasbool
Generate Boolean as schema Boolean.

1 Global administrator

mxe.int.globaldir
Specifies the Integration Global Directory.

1 Global administrator

mxe.int.queueusercachesize
Number of users that are cached for inbound
queue messages.

10 Global administrator

mxe.int.resolveschema
Resolves all schema includes to contain inline
schema definition.

1 Global administrator

mxe.int.servicedeployer
Web services deployer class is a custom Java class
for web service deployment when the default
deployer class is not used.

Global administrator

Integrating data with external applications 171

Table 30. General integration properties (continued).
Property Description Default value Who can edit property?

mxe.int.uddiinqurl
Represents the integration UDDI registry inquiry
URL.

Global administrator

mxe.int.uddiname
Represents the integration UDDI registry user ID.

Global administrator

mxe.int.uddipassword
Integration UDDI registry password.

Global administrator

mxe.int.uddipuburl
Integration UDDI registry publish URL.

Global administrator

mxe.int.validatedbupdates
Validates the database updates completed by
integration. When set to 1 (true), the deletion of
business objects, attributes, indexes, and
relationships by a user through the Database
configuration application are validated against
integration content. The validation ensures that
the data that is deleted is not referenced by an
integration component. If a reference exists, the
user is not able to complete the delete action.

1 Global administrator

mxe.int.verifywebappurl
Verifies web application URL when schema files
are generating.

1 Global administrator

mxe.int.webappurl
Represents the integration web application URL.
Configure this property to contain the correct
host name and port number.

http://localhost:9998/
meaweb

Global administrator

mxe.int.wsdlcurrentschema
Shows the current schema definition in WSDL.

1 Global administrator

mxe.int.wsdlincludesschema
Includes the schema directly in the WSDL.

1 Global administrator

mxe.int.wsdlnamespace
Represents the integration WSDL namespace.

http://www.ibm.com/maximo/
wsdl

Global administrator

mxe.int.xmlnamespace
Represents the integration XML namespace.

http://www.ibm.com/maximo Global administrator

mxe.int.binarytext
Converts a text value to base 64 encoded value.

10 Global administrator,
tenant administrator

mxe.int.defaultaction
The default action for flat file import.

AddChange Global administrator,
tenant administrator

mxe.int.defaultoperation
The default operation for the application export.

Sync Global administrator,
tenant administrator

mxe.int.dfltuser
Represents the Integration default login user.

mxintadm Global administrator,
tenant administrator

mxe.int.doclink.maxfilesize
Represents the maximum file size (MB) for
attachments that are included as part of an
integration message.

10 Global administrator,
tenant administrator

mxe.int.enabledatemillis
Enables the dates with milliseconds part.

0 Global administrator,
tenant administrator

mxe.int.expupdatesender
Updates the SENDERSYSID field on the primary
object during data export.

0 Global administrator,
tenant administrator

mxe.int.extracttrycount
The File Extract Retry Count is the number of
times an error message is retried during data
import when using file-based error management.

0 Global administrator,
tenant administrator

mxe.int.flatfiledelimiter
Integration flat file text delimiter is the default
delimiter value that is used for application import
enablement and for data import.

, Global administrator,
tenant administrator

172 Integrating Data With External Applications

Table 30. General integration properties (continued).
Property Description Default value Who can edit property?

mxe.int.flatfilenewline
Retains new line character in flat files. For fields,
such as descriptions, that can contain new line
characters, the characters are retained in the
integration messages when the property value is
1 (true).

0 Global administrator,
tenant administrator

mxe.int.interactiveimport
Performs the application import as interactive.

0 Global administrator,
tenant administrator

mxe.int.keyresponse
Provides response content for inbound integration
messages for all operations. When set to 1 (true),
response content, that includes the primary object
key values, is provided for all service operations.
When set to 0 (false), response content is
provided for Query and Create operations only.

1 Global administrator,
tenant administrator

mxe.int.maxextractdocs
Represents the number of error documents that
are written to each temporary file when an
extract file is building .

1000 Global administrator,
tenant administrator

mxe.int.mdbdelay
Represents the wait time in milliseconds before a
message from the error queue is processed.

-1 Global administrator,
tenant administrator

mxe.int.propagateuser
Propagate authenticated user through the
inbound queue. When set to 1 (true), the user of
the integration message is saved with the queue
message and used during the processing of the
message because it is processed from the queue
to the business objects.

0 Global administrator,
tenant administrator

mxe.int.savemessage
Indicates the save JMS message.

0 Global administrator,
tenant administrator

mxe.int.setclobasaln
Controls the truncation of characters that are sent
to interface tables.

0 Global administrator,
tenant administrator

mxe.int.textqualifier
The flat file text qualifier is the default text
qualifier value in application import enablement
and in data import.

" Global administrator,
tenant administrator

mxe.int.updatecoafromglcomp
Updates the Chart of Accounts that contain an
identified component. When set to 1 (true),
processing of inbound GL component data
initiates related updates to any chart of account
data that references the GL component.

1 Global administrator,
tenant administrator

mxe.int.usescientific
Uses scientific notation for double values.

1 Global administrator,
tenant administrator

mxe.int.validatexmltext
Validates XML element value for invalid XML
characters. When set to 1 (true), an outbound
message is validated to ensure that all data in the
message uses valid XML characters. If messages
contains invalid characters, the operation stops
and no outbound message is delivered.

0 Global administrator,
tenant administrator

mxe.int.whereclausepolicy
Sets the where-clause policy for an integration
query.

parse Global administrator,
tenant administrator

mxe.int.adminfromemail
The email address FROM integration
administration, which is used as the From email
address when integration initiates an email. Must
be a valid email address format, such as
from@example.com.

Tenant administrator

Integrating data with external applications 173

Table 30. General integration properties (continued).
Property Description Default value Who can edit property?

mxe.int.admintoemail
The email address TO integration administration,
which is used as the To email address when
integration initiates an email. Must be a valid
email address format, such as to@example.com.
You can provide more than one email address in
a comma-separated list.

Tenant administrator

REST integration properties

To see a list of REST API integration properties, specify mxe.rest as a filter term in
the System Properties application. For Boolean properties (true/false), a value of 0
means false, and a value of 1 means true.

Table 31. REST API integration properties

Property Description Default value

mxe.rest.format.json.mimetypes The REST supported mime types
for JSON.

application/json

mxe.rest.format.xml.mimetypes The REST supported mime types
for JSON.

application/xml,text/xml

mxe.rest.handler.mbo The REST MBO resource handler. com.ibm.tivoli.maximo.rest.
MboResourceRequestHandler

mxe.rest.handler.os The REST object structure
resource handler.

com.ibm.tivoli.maximo.rest.
OSResourceRequestHandler

mxe.rest.handler.ss The REST standard service
resource handler.

com.ibm.tivoli.maximo.rest.
MaxServiceResourceRequestHandler

mxe.rest.serializer.mbo.
imglib.image

The REST serializer for the
imagelib MBO for image format.

com.ibm.tivoli.maximo.rest.
ImageLibSerializer

mxe.rest.serializer.mbo.json The REST serializer for MBO for
JSON format.

com.ibm.tivoli.maximo.rest.
MboJSONSerializer

mxe.rest.serializer.mbo.xml The REST serializer for MBO for
xml format.

com.ibm.tivoli.maximo.rest.
MboXMLSerializer

mxe.rest.serializer.os.json The REST serializer for object
structures for JSON format.

com.ibm.tivoli.maximo.rest.
OSJSONSerializer

mxe.rest.serializer.os.xml The REST serializer for object
structures for xml formats.

com.ibm.tivoli.maximo.rest.
OSXMLSerializer

mxe.rest.serializer.ss.json The REST serializer for standard
services for JSON format.

com.ibm.tivoli.maximo.rest.
ServiceMethodResponseJSONSerializer

mxe.rest.serializer.ss.xml The REST serializer for standard
services for xml format.

com.ibm.tivoli.maximo.rest.
ServiceMethodResponseXMLSerializer

mxe.rest.webappurl Token Authentication on Web
Application URL.

mxe.rest.mbo.blockaccess Blocks access to the
comma-separated list of MBOs.

mxe.rest.mbo.defaultformat The REST default format for all
MBOs.

xml

mxe.rest.mbo.imglib.defaultformat The REST default format for the
MBO imglib.

image

mxe.rest.os.blockaccess Blocks access to the separated list
of object structures.

10

mxe.rest.os.defaultformat The REST default format for all
object structures.

xml

mxe.rest.ss.defaultformat The REST default format for all
standard service response

xml

174 Integrating Data With External Applications

Table 31. REST API integration properties (continued)

Property Description Default value

mxe.rest.supportedformats The REST supported formats for
a response.

xmljsonimage

mxe.rest.whereclausepolicy Sets the where clause policy for
REST query.

parse

OSLC integration properties

To see a list of OSLC integration properties, specify mxe.oslc as a filter term in the
System Properties application. For Boolean properties (true/false), a value of 0
means false, and a value of 1 means true.

Table 32. OSLC integration properties

Property Description Default value

mxe.oslc.dfltconsumerversion The default OSLC version that the
consumer uses.

2

mxe.oslc.dfltversion The default OSLC version for an OSLC
provider.

2

mxe.oslc.enableprovider Enables the OSLC provider. 1

mxe.oslc.idleexpiry Indicates the idle expiry time. 300

mxe.oslc.webappurl The provider's public URL. http://localhost/maximo/oslc/

mxe.oslc.collectioncount Adds the total count in the OSLC
collection.

0

mxe.oslc.defaultep The default OSLC Endpoint. OSLCDEFAULT

mxe.oslc.defaultformat The default format for OSLC. oslcjson

mxe.oslc.errorresponse The OSLC Error Response Format. 1

mxe.oslc.preferproviderdesc Prefers OSLC provider description for
resource registry reconciled URLs

false

mxe.oslc.prefersmallpreview Prefers small preview for OSLC consumer. false

mxe.oslc.prettyjson Pretty printed JSON. 0

mxe.oslc.prettyrdf Pretty printed RDF. 0

mxe.oslc.prqueryep The Provider Registry Query Endpoint. PROVIDERREGISTRY

mxe.oslc.prcreateep Represents the Provider Registry Create
Endpoint.

JMS queue configuration
Asynchronous transactions that are exchanged using either publish channels or
enterprise services, use Java Message Service (JMS) queues to exchange data with
an external system.

For inbound processing, when an enterprise service message is received, the
message is immediately written to a JMS queue and the caller of the service is
released from the transaction. The message is processed from the inbound JMS
queue, through the application business objects, and saved to the database.
Messages remain in an inbound queue until they are successfully processed or
until they are deleted from the queue. A common strategy for inbound queue
implementation is to isolate the queues and the queue consumers to a separate
server, or server cluster. This strategy ensures that inbound message-processing
does not have a performance impact on application users.

Integrating data with external applications 175

For outbound processing, messages sent out using a publish channel are written to
a JMS queue and the user who initiated the message is released from the
transaction. The message is processed from the outbound JMS queue using the
configured endpoint, and is delivered to the external application. Messages remain
in the outbound queue until they are successfully delivered to the external
application or are deleted from the queue.

There are three default message queues:
v One outbound sequential queue
v One inbound sequential queue
v One inbound continuous queue

A JMS queue implementation can operate on a single application server or across a
cluster of application servers.

Creating and configuring a queue
You can choose to use a single JMS queue for multiple external systems or create a
separate queue for each external system that you use. Queue creation and
configuration involves multiple steps. You can use the default queues or create
additional queues, depending on your integration requirements.

About this task

Separate queues are used to support outbound transactions and inbound
transactions. Configure a queue to support either inbound or outbound
transactions, not both. Configure outbound queues for use with publish channels
and configure inbound queues for use with enterprise services.

Procedure
1. Create and configure the message queue on the application server. JMS queues

can be configured automatically or manually on the WebSphere Application
Server. JMS queues must be manually configured on the WebLogic Server.

2. In the External Systems application, add properties to the queue. You can create
additional queues to meet system needs. If you do not use the default queues,
use an application server provider for your queue configuration.

3. In the External Systems application, configure the external system and
enterprise services to use the queues.

Queue properties:

In the External Systems application, you can configure several properties for each
JMS queue.

Property Description

Queue JNDI Name References the Java Naming and Directory
Interface (JNDI) name that is configured on
the application server. A default value is
provided.

Queue Connection Factory Name References the Connection Factory name that
is configured on the application server. A
default value is provided.

Initial Context Factory A value that you must configure when you
do not to use the default queues and do not
use a provided application server.

176 Integrating Data With External Applications

Property Description

Provider URL A value that you must configure when you
do not to use the default queues and do not
use a provided application server.

User ID The user ID that you configure when the
queue is secured on the application server.

Password The password that is configured when the
queue is secured in the application server
for the user ID.

Inbound Identifies whether the queue is used for
inbound processing. If the inbound value is
null, the system uses the queue for
outbound processing.

Sequential Identifies whether the queue is a sequential
queue. If the sequential value is null, the
system uses the queue for continuous queue
processing.

Compress Identifies whether the messages are
compressed when they are written to the
queue and decompressed when they are
pulled from the queue. Compression
provides significantly reduced message
sizes. The standard Java Inflater and Deflater
APIs (java.util.zip) are used for compression.

Maximum Try Count Identifies how many times the integration
framework attempts to reprocess a message
after it encounters an error. The system
continues to retry the message until the
count value is met. The value of this
property must be set to zero when an error
queue is implemented.

Sequential queues
The sequential queue is a JMS queue that uses a predefined system cron task to
consume messages. Messages in sequential queues are processed on a strict
first-in-first-out basis, ensuring that messages are processed in the order that they
are generated and received.

When a message results in an error, the system generates an error that can be
managed in the Message Reprocessing application, and does not process
subsequent messages in the queue until the error is cleared.

You can configure two system sequential queues for inbound and outbound
message processing. A predefined cron task, JMSQSEQCONSUMER, polls the
queues. There are two instances of the task, one that polls the inbound queue and
one that polls the outbound queue. If you create additional sequential queues, you
can configure additional instances of the cron task to point to the additional
queues.

The following table lists the cron task parameters that you can configure.

Parameter Description

MESSAGEPROCESSOR Java class that processes the messages from
the queue. The system provides this class.

Integrating data with external applications 177

Parameter Description

QUEUENAME Queue JNDI name, when the queue is
created on the application server.

SELECTOR The WHERE clause for configuring an
instance of the cron task to process a subset
of messages in the queue. This parameter is
optional.

TARGETENABLED Ensure that the value is at the default of 0
(false). The functionality of this flag is
superseded by the donotrun functionality.
Use the donotrun parameter in the cron task
framework to control which servers the cron
task runs on.

Continuous queues
A continuous queue is a JMS queue with a message-driven bean (MDB) as a
consumer. A continuous queue is predefined for enterprise services only and uses
multi-threaded processing to provide better system performance. A continuous
queue does not guarantee the processing order of the messages as is the case with
a sequential queue.

When message processing results in an error that can be managed in the message
reprocessing application, the system generates an error message and then continues
processing subsequent messages in the queue. There is one default continuous
queue to process inbound messages. You can choose to implement additional
continuous queues, depending on your integration requirements.

Enabling message beans:

Application server message beans act as the consumer of messages from a
continuous queue. To enable message beans to support the continuous queue, you
must uncomment lines in the XML deployment files on the application server.

Procedure

1. For both WebSphere Application Server and WebLogic Server environments,
uncomment the following lines of code in the ejb-jar.xml file located in the
...\applications\maximo\mboejb\ejbmodule\META-INF\ folder:
<!-- MEA ejb for MDB
<message-driven id="MessageDriven_JMSContQueueProcessor_1">
<ejb-name>JMSContQueueProcessor-1</ejb-name>
<ejb-class>psdi.iface.jms.JMSContQueueProcessor</ejb-class>
<transaction-type>Container</transaction-type>
<message-destination-type>javax.jms.Queue</message-destination-type>
<env-entry>
<env-entry-name>MESSAGEPROCESSOR</env-entry-name>
<env-entry-type>java.lang.String </env-entry-type>
<env-entry-value>psdi.iface.jms.QueueToMaximoProcessor</env-entry-value>
</env-entry>
</message-driven>

-->
<!-- MEA ejb for MDB
<container-transaction>
<method>
<ejb-name>JMSContQueueProcessor-1</ejb-name>
<method-name>*</method-name>

178 Integrating Data With External Applications

</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
-->

2. Uncomment the following lines in the ...\applications\maximo\mboejb\
ejbmodule\META-INF\ibm-ejb-jar-bnd.xmi file on a WebSphere Application
Server environment:
<!-- MEA ejb for MDB
<ejbBindings xmi:type="ejbbnd:MessageDrivenBeanBinding"

xmi:id="MessageDrivenBeanBinding_1" activationSpecJndiName="intjmsact">
<enterpriseBean xmi:type="ejb:MessageDriven"

href="META-INF/ejb-jar.xml#MessageDriven_JMSContQueueProcessor_1"/>
</ejbBindings>-->

3. Uncomment the following lines in the ...\applications\maximo\mboejb\
ejbmodule\META-INF\weblogic-ejb-jar.xml file on a WebLogic Server
environment:
<!-- MEA MDB
<weblogic-enterprise-bean>
<ejb-name>JMSContQueueProcessor-1</ejb-name>
<message-driven-descriptor>
<pool>
<max-beans-in-free-pool>3</max-beans-in-free-pool>
</pool>
<destination-jndi-name>jms/maximo/int/queues/cqin</destination-jndi-name>
<connection-factory-jndi-name>jms/maximo/int/cf/intcf

</ connection-factory-jndi-name>
</message-driven-descriptor>
<transaction-descriptor>
<trans-timeout-seconds>600</trans-timeout-seconds>
</transaction-descriptor>
<jndi-name>JMSContQueueProcessor-1</jndi-name>
</weblogic-enterprise-bean>
-->

4. After making changes to the XML files, you must rebuild the EAR file and
redeploy it to the application server for the changes to take effect.

Continuous queue performance:

To improve queue performance, you can increase the number of message-driven
beans for a queue and introduce additional application servers in a cluster. Because
message processing is multi-threaded, errors can occur because of the random
order of processing.

The following examples describe errors that can occur. In both scenarios, the
integration error management processing can successfully reprocess the error
before the system administrator can review it.

For example, you are batch loading a large volume of item and inventory messages
in the continuous queue, and multiple inventory records exist for the same item
number. If an inventory message for Item A is processed before the item message
that adds Item A to the system is processed, the inventory message produces an
error because Item A does not exist. Processing continues with the next message.

Eventually, the item message for Item A is processed and Item A is added to the
system. The failed message can then be successfully processed. In this case, the
error is corrected without manual intervention.

Integrating data with external applications 179

This type of situation can occur when you load related messages in the continuous
queue at the same time. Such a situation is more likely to occur when the volume
of transactions is high but also can occur whenever two messages process related
data concurrently.

For example, two messages try to update the same system record at the same time.
One message succeeds and the other fails. However, the error management
processing of the system must process the second message after the first update is
completed.

Configuring message beans:

Server-specific extensions control the maximum number of beans that you can
create.

Configuring message beans on WebSphere Application Server:

By default, the server is configured to have five message-driven beans.

Procedure

1. In the administrative console, select JMS activation specification.
2. Select intjmsact.
3. Specify a value in the Maximum Concurrent End Points field.

Configuring message beans on WebLogic Server:

By default, the WebLogic Server is configured to have three message-driven beans.

Procedure

1. Open the weblogic-ejb-jar.xml file in a text editor.
2. Search for the following lines of code:

<pool>
<max-beans-in-free-pool>3</max-beans-in-free-pool>
</pool>

3. Replace the value 3 with a different value if required. Start with a relatively
low number of message-driven beans and monitor performance.

4. Modify the file to increase the number of message-driven beans incrementally
until you are satisfied with the processing performance of the messages in the
continuous queue.

What to do next

If system performance is poor, you can resolve some system performance issues by
clustering servers and isolating the inbound message processing to a specific server
cluster.

Message caching:

Continuous queue processing uses the Maximum Batch Size property, under the
Activation Specification definition, to control the number of messages received
from the messaging engine in a single batch.

If three message-driven beans are enabled, and the batch size is 10, up to 30
messages can be cached. Test with different values to ensure that the value that
you set does not impact application users or server processes.

180 Integrating Data With External Applications

An unlimited number of messages can be processed when you set the Maximum
Batch Size value to -1 on a WebLogic Server environment.

If you plan to use a WebSphere Application Server error queue, use the default
value for the batch size.

Configuring an error queue for the continuous queue:

You can implement an error queue on the application server that moves a message
out of the main queue to a secondary queue when a message goes in error. Unless
your integration scenario supports a very low volume of messages, configure an
error queue to support message processing through the continuous queue.

A continuous queue uses MDBs to consume messages. When a message goes in
error, the MDBs continue to consume the messages in error, even after the
messages reach the maximum try count that is configured for processing. The
continuous selection of these messages consumes system resources and can slow
down, or even prevent, other messages from being processed. Configuring an error
queue for the continuous queue helps to avoid performance delays or transaction
bottlenecks by passing messages in error to a secondary queue.

Configuring an error queue on WebSphere Application Server:

You can configure a continuous queue to have a corresponding error queue. If a
message encounters an error, it is moved out of the continuous queue to the error
queue when the number of retries set in the maximum failed deliveries parameter
is met. The continuous queue then processes new queue messages.

About this task

The system provider must perform this task on behalf of the tenant.

Procedure

1. Configure an error queue destination within the same bus member where the
continuous queue resides.

2. Configure the continuous queue destination definition to have an exception
destination. The exception destination must point to the error queue destination
that you defined.

3. In the error queue, add an exception destination that points to itself. Errors in
the error queue move from the top of the error queue to the bottom of the error
queue. Messages in error are continuously retried.

4. Open the ejb-jar.xml file in a text editor to enable the MDBDELAY property.
To avoid excessive use of system resources during message reprocessing, the
MDBDELAY property delays the processing of messages.

5. Uncomment the following lines of code and set an appropriate value:
<env-entry>
<env-entry-name>MDBDELAY</env-entry-name>
<env-entry-type>java.lang.Long </env-entry-type>
<env-entry-value>30000</env-entry-value>
</env-entry>

The default value is 30 seconds (30000 milliseconds).
6. Open the ibm-ejb-jar-bnd.xmi file and uncomment the following lines of code

to enable the message-driven beans on the error queue.

Integrating data with external applications 181

<!-- MEA MDB for error queue
<ejbBindings xmi:type="ejbbnd:MessageDrivenBeanBinding"

xmi:id="MessageDrivenBeanBinding_1" activationSpecJndiName="intjmsacterr">
<enterpriseBean xmi:type="ejb:MessageDriven"

href="META-INF/ejb-jar.xml#MessageDriven_JMSContQueueProcessor_2"/>
</ejbBindings>
-->

Continuous queue errors on WebLogic Server:

The WebLogic Server queue has a redelivery delay property that can control how
messages in error are reprocessed. The redelivery delay property represents the
time between when the message reports an error and when the message is
reprocessed.

You cannot view the message in the queue for the amount of time you specified in
the redelivery delay property. The redelivery delay improves system performance.
Messages other than messages in error can be processed for the amount of time
that is defined in the redelivery delay property. The processing delay applies to the
message and not to the thread that processes the message.

If you set the batch size property to -1 (unlimited), and the redelivery delay
property to 30 seconds (30,000 milliseconds), new messages can be processed in the
queue. Processing continues even when a large number of errors are being
reprocessed.

The same connection factory is used for both the sequential and continuous
queues. To avoid sequential consumer processing issues, set the redelivery delay
value in the destination queue configuration. Do not set the connection factory
level configuration.

If the number of times that a message in error is processed exceeds the configured
try count, the message stops processing and is redirected for error management.

Alternatively you can implement an error queue. To implement an error queue,
you must uncomment entries for the error queue in the ejb-jar.xml and
weblogic-ejb-jar.xml files.

Queue message format
Messages that are loaded into the JMS queues by the integration framework have
defined components and formats The message body contains the XML message
that is processed into the system or sent to the external system.

Message header

The message header can contain the JMS message ID and standard JMS header
values.

Header Description

JMSMessageID A message ID that is generated by the
system.

JMSRedelivered Identifies whether the message was
reprocessed.

182 Integrating Data With External Applications

Message properties

The properties contain the following properties from the JMS provider and the
integration framework. The integration framework properties are of the string data
type.

Property Description

MEAMessageID The message ID that is generated by the
integration framework.

destjndiname The name of the queue or topic that the
message is written to.

INTERFACE The name of the publish channel (outbound
queue) and the enterprise service (inbound
queue).

destination The external system name for outbound
messages.

SENDER The external system name for the inbound
messages.

USER The name of the user that is associated with
the inbound integration message. This value
can be used for authorization security if
required.

compressed Indicates whether the message is
compressed. Values can be true or false; the
default value is false.

The standard Java Inflater and Deflater APIs
(java.util.zip) are used for compression.

uncompressed_length Stores the original message payload size
before compression. This value must comply
with the int [xsd:int] schema type and is
present only when the compressed property
is set to true.

MSG_TRK_ENABLED Internal value.

MSG_OP_MODE The endpoint name for the outbound
messages. Fixed string MXJMS for inbound
messages.

MSG_TRK_STORE_MSG Internal value.

MSG_TRK_EXTSYS The external system name for outbound and
inbound messages.

Msgkeyval A field name message key.

searchfieldval A comma-separated search field value.

msgoperation Indicates whether the publish channel or
enterprise service contains a sync, create,
update, or delete operation.

msgstatus Indicates whether the message has a
RECEIVED, ERROR, DELETED, or a
PROCESSED status value.

msgerrmsg Contains the exception message text.

Integrating data with external applications 183

Messages in text format:

Messages that are written to a queue by the integration framework are in byte
format by default. You can use the External Systems application to ensure that
messages in text format are also supported.

To support messages in text format, select the Text check box in the Add/Modify
queue window in the External Systems application. When a queue is configured to
support messages in text format, all subsequent messages that are written to the
queue by an integration component are in the javax.jms.TextMessage format instead
of the default javax.jms.BytesMessage format.

When the queue is configured for messages in text format, the Text Message
Encoding field in the External Systems application identifies the encoding of
text-formatted messages in any of the inbound queues configured for the external
system. When no value is provided, messages are assumed to be encoded in
UTF-8. Messages that are written to the outbound queue are always encoded with
UTF-8.

Queue selectors
Selectors act as WHERE clauses in the JMS queue consumer. Selectors can be
applied to message headers and properties in either a continuous or a sequential
queue.

The following table lists how you can use continuous selectors in the JMS queue
consumer.

Type of queue Where to identify selector

Sequential queue Specified as a property of the cron task.

Continuous queue Specified n the ejb-jar.xml code of the
message-driven bean.

Applying selectors splits a queue into smaller queues, each of which contains a
subset of data that each cron task or message-driven bean uses. An error in one
subset of the data does not stop processing in the others in a sequential queue.

While selectors provide flexibility in separating the processing of transactions, they
impair the performance of poll processing. Depending on the volume of
transactions, you can prefer to implement multiple queues instead of one queue
with multiple selectors. Multiple queues typically provide better performance.

You can add the following statement to the SELECTOR property of the SEQQIN
instance of the JMSQSEQCONSUMER to instruct the cron task to process the
MXPOInterface and MXPRInterface transactions from the corresponding external
system:
SENDER=’EXTSYS1’ and INTERFACE in ('MXPOInterface’, 'MXPRInterface’)

Add the following content to the message bean configuration in the ejb-jar.xml
file to instruct the message-driven bean to process the MXPOInterface and
MXPRInterface transactions from the corresponding external system:
<message-selector>

SENDER=’EXTSYS1’ AND INTERFACE IN ('MXPOInterface’, 'MXPRInterface’)
</message-selector>

184 Integrating Data With External Applications

If two external systems send data to an inbound sequential queue, an error in any
record stops the processing of all transactions in that queue to maintain a
first-in-first-out processing order. Create multiple instances of a cron task, each
with a selector that processes a different external system, to prevent an error in one
system from stopping transactions from the second system.

Ensure that the where clauses in the selectors identify the mutually exclusive sets
of transactions in a sequential queue. Include all the transactions that are inserted
into the queues to ensure that all messages are processed in a first-in-first-out
order.

Viewing and deleting messages in a JMS queue
You can view a list of the messages in a JMS queues, download these messages to
view their content, and you can delete messages from configured queues. When
viewing or deleting messages, you can apply a selector to limit the messages
returned for processing.

About this task

Messages that are currently being processed to a continuous queue by a
message-driven bean or to a sequential queue by a JMS cron task are not available
to view or delete. You can deactivate the cron task to stop the processing of
messages to a sequential queue. Message-driven beans continually process
messages and the number of messages being processed can vary. Unless you
disable message-driven beans, it is likely that not all messages can be viewed or
deleted. If you view or delete messages while message-driven beans are enabled, it
is possible that not all messages are available for processing.

Procedure
1. In the External Systems application, select the Add/Modify Queues action .
2. Select a queue, and click either the View Queue Data button or the Delete

Queue Data button.
3. Optional: If you select the View Queue Data option, you can specify a number

in the Count field to limit the number of records to view and you can check
the Count Only field if you only want to see how many messages are currently
in the queue.

4. Optional: Specify one of the following selectors if you want to filter the records
returned in either the View Queue Data window or in the Delete Queue Data
window:

Option Description

MEAMessageID ID of the message (applies to inbound and
outbound messages).

INTERFACE The name of the enterprise service for
inbound messages or the name of the
publish channel for outbound messages.

destination The name of the external system for
outbound queues only.

SENDER The name of the external system for
inbound messages only.

USER The user provided with the message. This
value is optional, and applies to inbound
messages only.

Integrating data with external applications 185

Selector values are case sensitive and you must enclose the value of the selector
in single quotes, for example INTERFACE='MXPERSONInterface'.

Configuring queues with WebSphere MQ
You can use IBM WebSphere MQ to configure and manage queuing activities. The
integration framework supports WebSphere MQ Version 6.
Related concepts:
“Messages in text format” on page 184
Messages that are written to a queue by the integration framework are in byte
format by default. You can use the External Systems application to ensure that
messages in text format are also supported.

Configuring JMS endpoints and handlers:

Outbound messages in a publish channel are placed into the default queue and
you must configure the JMS endpoint and handler to send the message to
WebSphere MQ.

Procedure

1. Create an WebSphere MQ provider on the WebSphere Application Server and
configure an integration endpoint to point to the message queue (MQ) provider
by using:
a. The destination JNDI name (DESTJNDINAME)
b. The connection factory JNDI name (CONFACTORYJNDINAME)

2. Configure the endpoint to point to the WebSphere MQ by using:
a. The destination JNDI name (DESTJNDINAME)
b. The connection factory JNDI name (CONFACTORYJNDINAME)
c. The provider URL (PROVIDERURL)
d. The initial context factory (CONTEXTFACTORY)

Configuring integration queues and WebSphere MQ provider:

To replace integration framework queues with WebSphere MQ queues, configure
the queues on WebSphere Application Server and add these queue definitions in
the External Systems application.

Procedure

1. Create the JMS queue by defining an alternate provider to replace the default
provider.

2. Create a proxy queue on the WebSphere Application Server by using the
WebSphere MQ provider that points to your message queue (MQ) server
queue.

3. In the Add/Modify Queues dialog window in the External Systems application,
add values to the Queue JNDI Name and Connection Factory fields to point to
the proxy queue and connection factory.

Results

Outbound messages that are destined for the default queue are delivered to the
message queue (MQ), and inbound messages are retrieved from the message queue
(MQ).

186 Integrating Data With External Applications

Error management
The integration framework supports a variety of message formats, protocols for
exchanging messages, and both synchronous and asynchronous message
processing. The management of errors requires multiple options to meet the varied
implementation configurations that you can choose.

JMS queues are used by the integration framework as a staging mechanism for
inbound and outbound messages. Queue error management is initiated when an
error condition is identified and you can view, correct, cancel, and reprocess
problematic messages.

Non-queue error management
When you start the synchronous processing of inbound or outbound integration
messages, you are notified of any errors at the time of execution.

Non-queue error management is necessary if an error occurs when a synchronous
message is being processed. For inbound messages, instead of relying on an error
queue, the integration framework responds synchronously to the caller of the
process with an error message. The calling application must receive the response,
correct the error, and retry the transaction.

Use the system log to troubleshoot synchronous transaction errors. The system log
contains the processing exception that the integration framework issues to the
caller of the process.

Queue-based error management
You can use the Message Reprocessing application to manage erroneous inbound
and outbound asynchronous integration messages that use JMS queues.

Errors that occur when a message is sent from a queue to an external system are
typically caused by a communication failure or a problem with database
configuration when writing to interface tables or files. Errors that occur during
inbound processing are typically a result of business rule validations or the
inbound processing logic of the integration framework.

The sequential queue processes messages one at a time, in a first-in-first-out
sequence. When the integration framework encounters an error in processing a
message in a sequential queue, inbound or outbound, the error management
mechanism is initiated and the message is flagged as having an error. Subsequent
messages in the queue are not processed until the message in error is resolved or
deleted. As a result, only a single error can exist in a sequential queue.

The continuous queue handles inbound processing only and processes messages in
a multi-threaded mode. When an error occurs in the continuous queue, error
management is initiated and the message is flagged as having an error. The
integration framework continues to process subsequent messages in the queue. As
a result, multiple errors can exist in a continuous queue.

Depending on your system configuration, the integration framework makes several
attempts to reprocess the message, for either type of queue, before determining
that an error requires intervention. The system also performs the following
activities when encountering an error:
v Sends a notification to a specified email account, informing the recipient that an

error occurred. On an IBM WebSphere Application Server environment, the

Integrating data with external applications 187

integration framework sends an additional email message to the specified email
account each time that you successfully restart your application server.

v Creates a record in the Message Reprocessing application. Creates a record that
can be viewed in the Message Reprocessing application. This record includes the
message that was placed in the queue.

Configuring error management
To configure error management, you must configure system properties and
configure the external system.

Configure error management properties:

Before you use the integration framework, configure properties in the System
Properties application.

Procedure

1. Filter for the mxe.int.adminfromemail property and specify an email address,
such as mxintadm@example.com. This address appears in error notifications
that are submitted by the integration framework. Some SMTP servers require
this address to be a valid email address format; some servers accept any value.

2. Filter for the mxe.int.admintoemail property and specify one or more email
addresses to receive notification of message processing errors. Use commas to
delimit several email addresses. You can optionally use the email address
property at the queue level to override the administrator address. Use this
option if you want to specify different email addresses for each queue. If you
do not configure an email address, no email notification is sent when queue
processing errors occur.

3. Filter for the mail.smtp.host property and specify an SMTP server if none has
been configured. This property is not unique to the integration framework, and
can be configured for other applications.

Configuring error management on the external system:

Configure the external system to handle error management.

Procedure

1. In the External Systems application, specify an appropriate value in the
Maximum Try Count field. There is no limit to the number of times that the
system retries the transaction. After the first unsuccessful attempt to process the
transaction, the system administrator receives a notification, and a message is
written to an error file. This value is typically set to 0 for outbound queues.

2. Specify a value in the E-mail Address field if you want error notification
messages to be sent to different addresses for each queue. You can enter
multiple addresses, delimited with a comma (,). The value in this property
overrides the value in the administrator email address property. If no value is
specified, email notifications are sent to the email addresses that are specified
for the administrator email address property.

3. Click Save.

Error notification
When an inbound or outbound transaction results in an error in a queue, an email
notification is sent to the system administrator only if no other unresolved errors
are waiting in the same queue. If multiple errors exist in the queue, the system
administrator must resolve all of them before notification of new errors is sent.

188 Integrating Data With External Applications

An email error message includes a Java error stack trace.

The same notification process is used for all errors, for continuous and sequential
queues, for inbound and outbound messages, and regardless of whether the
system is running in a clustered or non-clustered environment.

The following example describes error notification for a continuous inbound queue
contains ten messages. The first four messages are processed successfully and an
error occurs on the fifth message. Depending on the value you set for the
Maximum Try Count property for the external system, the message can be tried
one or more times. If the message continues to cause an error, an email notification
is sent to the system administrator and subsequent messages in the queue are
processed. If another error occurs in the seventh message, another email
notification is not sent if the system administrator has not resolved the original
error. If the system administrator resolved the original error and no errors are
pending, a new email notification is sent.

If the error is encountered in a sequential queue, processing is the same as in a
continuous queue except that the system does not process subsequent messages
until the message with the original error is resolved.

Multiple errors can exist only in the continuous inbound queue. In a clustered
environment, the system administrator can receive one email error notification per
application server, depending upon the timing of the transactions in error.

An uncommon exception condition can occur for outbound messages when a
message is saved to the queue but the commit of the transaction to the queue fails.
This exception can occur because a database connection to the JMS data store is
not available. If this exception occurs, a notification is sent and the message in
error is visible in the Message Reprocessing application with a status of either
JMSERROR or SAVED. Because the message was not saved successfully in the
queue, you cannot set the message status to RETRY, but you can process the
message from the application.

Message reprocessing
In the Message Reprocessing application, you can manage messages that are
flagged with an error, including changing the message status, correcting the
message, or deleting it from the database.

If message tracking is enabled, use the Message Tracking application to determine
which tracked messages are flagged with an error. If message tracking is not
enabled, you can check for transaction errors in the Message Reprocessing
application.

Message status values:

To change the status of a message, select the Change Status action in the Message
Reprocessing application. The system designates a status to each message to
indicate whether it is ready for processing.

A message can have a status of RETRY or HOLD:

Status Description

RETRY The message is ready to be reprocessed by
the system.

Integrating data with external applications 189

Status Description

HOLD The message is not ready to be reprocessed
by the system.

The RETRY status is the default status for messages that are flagged with an error.
Until you correct the processing problem, the system continues to reprocess the
message according to the configured queue retry count. When the retry count
condition is met, the system changes the messages status to HOLD.

You can halt message reprocessing by changing the message status to HOLD. A
hold status prevents the system from reprocessing the flagged message and from
updating the system database tables.

Error XML messages:

You can review the XML message that is generated when an error occurs and you
can modify the content of the message.

When you manage an error in the Message Reprocessing application, you can the
see the following information:
v The Error Data field contains the error message.
v The message content contains the original message that was placed in the queue

and is causing an error. You can edit this element.
v If available, the internal record contains the XML representation of the message

at the time that the error occurred. You cannot edit the internal record but you
can use it to view if integration processing changed the original message before
the error occurred.

The internal record represents the object structure that was created during
enterprise service and user exit processing. An internal record is available only for
inbound transactions, and only when enterprise service and user exit processing
complete successfully. If an internal record is available, it is provided for
information only and you cannot change it.

Following is an example of an error XML message:
<?xml version="1.0" encoding="UTF-8"?>

<SyncMXPERSON xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
creationDateTime="2014-04-22T14:04:03-04:00"
transLanguage="EN" baseLanguage="EN" messageID="11798570432187483"
maximoVersion="7 6" event="1" messageid="11798570432652428">

<MXPERSONSet>
<PERSON action="Update">
.
.
.
</PERSON>
</MXPERSONSet>
</SyncMXPERSON>

Following is an example of an internal record XML message:
<?xml version="1.0" encoding="UTF-8"?>

<SyncMXPERSON xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
creationDateTime="2014-04-22T14:04:03-04:00"
transLanguage="EN" baseLanguage="EN" messageID="11798570432187483"
maximoVersion="7 6" event="1" messageid="11798570432652428">

190 Integrating Data With External Applications

<MXPERSONSet>
<PERSON action="Update">
.
.
.
</PERSON>
</MXPERSONSet>
</SyncMXPERSON>
</IR>
</ERROR>

Critical errors:

Critical errors are processing exceptions that the integration framework error
correction process cannot retry.

Transaction processing exceptions can occur when incorrect data, such as a special
character, is present in the XML file. To correct a critical error, you remove the
incorrect data from the error XML message. You can see incorrect data that is
associated with a critical error in the main tab of the Message Reprocessing
application.

Correcting errors:

In the Message Reprocessing application, you can either reprocess a message that
is in error, or you can delete the message from the database.

Reprocessing an edited message:

You can view, modify, and reprocess messages in the Message Reprocessing
application. After you edit the error XML message, you can save or cancel the
changes without reprocessing the message.

About this task

You can edit only those messages that have a HOLD status. If the message has a
RETRY status, the content of the message is read-only.

Procedure

1. In the Message Reprocessing application, select the message that you want to
modify and click the Message Details icon.

2. In the Error Data window, make any necessary changes to the message.
3. Click Process if you want to reprocess the message. You can click Save to save

the changes without reprocessing the message or you can click Cancel to
discard any changes you made.

Results

If the processing is successful, the Message Reprocessing application performs the
following tasks:
v Deletes the record in the error message table.
v Updates the DELETEFLAG, CHANGE BY, and CHANGE DATE attributes in the

error status table

Integrating data with external applications 191

What to do next

In the Message Details window, refresh the list of messages that are flagged with
an error. If the message was successfully reprocessed, it is dropped from the list.

Deleting messages:

You can delete messages from the error message queue. After you delete a
message, it cannot be reprocessed.

Procedure

1. In the Message Reprocessing application, select the message records that you
want to delete.

2. Select the Delete Message action.
3. Click OK.

Results

When a message is deleted, the record is deleted from the MAXINTERRORMSG
and MAXINTERROR tables. The application refreshes the result set and omits the
deleted message listing on the main tab of the Message Reprocessing application.

Refresh messages:

You can use the Refresh icon in the Message Reprocessing application to update
the message list. When you refresh the message list, you can check on the status of
a specific message listings.

If the message reprocessing was successful, the application omits the applicable
message listings. If you delete a message, the application omits the deleted
message listing.

Error management with file-based data import
The integration framework supports error management with the Message
Reprocessing application which allows you to review, correct, reprocess, and delete
messages that go in error when processed from an inbound queue. When data is
imported from an XML file or a flat file, a second option is available that manages
errors using a downloaded file instead of the Message Reprocessing application.

File-based error management is beneficial when you import a large number of
messages that can cause a large number of errors. Managing a large number of
errors in a file format can be easier and quicker than managing them individually
in the Message Reprocessing application.
Related concepts:
“Exporting and importing file-based data” on page 218
The integration administrator can initiate export and import data from within the
External Systems application to support, for example, integrating data using files.
The import process includes the ability to preview a data load from a file to
validate the data prior to saving it to the database. The import process also
includes an option to manage errors that result from file loading in the same file
format as the imported file

192 Integrating Data With External Applications

File-based error management:

You can use file-based error management with the data import feature. File-based
error management provides the ability to identify all integration messages flagged
with an error and download a complete file that contains all errors. The
downloaded file is in a format that is consistent with the file that was used for the
import.

To configure file-based error management, in the Data Import window, select the
File-based Error Management check box.

When you select the File-based Error Management check box and leave the
Import Preview check box cleared, you receive a system message after the inbound
messages are processed successfully to the queue.

Inbound processing logic identifies processing errors on any of the messages in the
source file and makes these failed messages available for download in a
reprocessable file. The Message Reprocessing application provides a facility to
download the reprocessable file.

Selecting the File-based Error Management check box means that any integration
messages flagged with an error are available only in the reprocessable file and are
not displayed in the messages section of the Message Reprocessing application.

Configuring error management in data import cron tasks:

You can set the ISFILEEXTRACT parameter in the XMLFILECONSUMER and
FLATFILECONSUMER cron tasks to identify the error management mechanism
that you want to use.

The following table contains the possible values for the ISFILEEXTRACT parameter:

Value Error management mechanism

0 Error management is handled in the
Message Reprocessing application.

1 File-based error management is handled in
the Data Import window and in the
reprocessable file.

File-based error management means that any integration messages flagged with an
error are available only in the reprocessable file and are not displayed in the
messages section of the Message Reprocessing application.

Information extracted by file-based error management:

File-based error management provides the ability to download a reprocessable file
that contains all of the error messages that originated from a single input file.

The following table contains the information available in the Error Extract section
of the Message Reprocessing application.

Field Description

Import file Name of the source file that generated the reprocessable file.

Integrating data with external applications 193

Field Description

Enterprise
service

Name of the enterprise service that was used to import the source file.

External
system

Name of the external system that was used to import the source file.

Import date Date and time when the data import process initiated processing of the
source file.

Imported
count

Total number of messages imported from the original source file.

Processed
count

Number of messages processed successfully.

Error count Number of messages that have errors.

File format Format of the source file.

Available to
extract

Identifies whether the inbound processing of the source file has completed.

Extract icon Action button that initiates the file download process. To assure that the
source file has been completely processed by the import mechanism, files are
only available for download when the sum of error count and processed
count is equal to the imported count.

Delete icon Action button that deletes the selected record from the Error Extract table.
You can only delete table records if the sum of the error count and
processed count is equal to the imported count.

Downloading reprocessable files:

You can download a reprocessable file and fix the processing errors identified in
the file. You can then attempt to reload the reprocessable files without removing
any of the error message description information that is contained in the file.

Procedure

1. In the Message Reprocessing application, identify the source file from which
you will be downloading its corresponding errors.

2. Verify that the source file has been fully processed by the data import process.
The sum of the error count field and the processed count field must equal the
imported count field.

3. Click the Download icon.
4. Save the reprocessable file to your client or to an accessible file server location.

Reprocessable file format:

When you download the reprocessable file, it is provided in the same format as the
original input file. If you use the flat file format, the file uses the same delimiter
and text qualifier. The default file name for the reprocessable file is
<UniqueFileIdentifier>_<OriginalFileName>.<OriginalFileExtension>

Example of an XML reprocessable file

A reprocessable file based on an XML file, includes an additional element in the
main MBO of the original object structure. For example, a reprocessable file
generated based on MXASSET information includes the MAXINTERRORMSG
element as part of the asset elements.

194 Integrating Data With External Applications

<?xml version="1.0" encoding="UTF-8"?>
<SyncMXASSET xmlns="http://www.ibm.com/maximo" transLanguage="EN">

<MXASSETSet>
<ASSET>

<ANCESTOR />
<ASSETID>94</ASSETID>
<ASSETNUM>THREE_T2002</ASSETNUM>
<ASSETTAG />
<ASSETTYPE />
...
...
...
<WARRANTYEXPDATE>2020-12-24T00:00:00-05:00</WARRANTYEXPDATE>
<YTDCOST>0.0</YTDCOST>
<MAXINTERRORMSG>

The following error occurred while processing ASSET.BMXAA4147E -
Item set error1 does not exist.

</MAXINTERRORMSG>
</ASSET>
...
...
...

</MXASSETSet>
</SyncMXASSET>

Example of flat format reprocessable file

Reprocessable files that follow a flat file structure include an additional column.
For example, a reprocessable file generated based on MXASSET information
includes the MAXINTERROR column at the end of the original record structure:
EXTSYS1,MXASSETInterface,,EN
ASSETNUM,AS_DESCRIPTION,AS_DESCRIPTION_LD,HIERARCHYPATH,AS_SITEID,MAXINTERRORMSG
T-SP500_error,autospray,,,TEXAS,
The following error occurred while processing ASSET.BMXAA4049E -
The value specified T-SP500_error exceeds the maximum field length.

Deleting reprocessable files:

You can permanently delete data that is available to reprocess as a file.

Procedure

1. In the Message Reprocessing application, identify the row of reprocessable data
that you want to delete.

2. Click the Delete icon.

Interface table error management
Interface tables can be used for inbound and outbound data exchange. Errors can
occur when writing inbound data from an interface table to a queue or outbound
data from a queue to an interface table.

If an error is encountered by the cron task that pulls an outbound message from a
queue, the message remains in the queue until the error condition is addressed.
Errors may occur for the following reasons:
v The interface table does not exist.
v There is database error due to lack of space.
v The message content, as defined by the object structure, was altered but the

interface table was not recreated to reflect the new message format.

Integrating data with external applications 195

When an outbound message reaches an interface table, it is the responsibility of the
external application to retrieve that data and manage errors based on their
integration implementation.

The cron task that writes inbound messages to a queue can encounter errors for
the following reasons:
v The JMS queue is deactivated or free space is not available.
v The enterprise service or external system name is not valid.
v The enterprise service is not enabled for the external system.
v The external system is not enabled.

When an error occurs during inbound interface table processing, the polling
program writes the exception trace in the IMPORTMESSAGE column of the
MXIN_INTER_TRANS queue table. For the first error in the MXIN_INTER_TRANS
queue table, the system sends an email notification to the administrator. You can
resolve the error condition by updating the row of data in MXIN_INTER_TRANS,
for example, correcting the value of the external system name, or by updating the
configuration data in the application, for example, marking the enterprise service
as enabled.

After the cron task processes subsequent records in the MXIN_INTER_TRANS
queue table, it switches to an idle state that is based on the defined cron task
processing intervals. When processing resumes, the cron task tries to process the
records in error, as well as new records added to the MAX_INTER_TRANS queue
table.

After sending an error notification, the cron task does not send notification of
additional errors if the queue table contains one transaction that is marked in error.
It is assumed that the person who was notified of the initial error sees and corrects
additional errors when the queue table is examined. After all current errors are
corrected, the cron task sends a notification when it encounters a new error.

Any errors that occur after the cron task successfully writes an interface table
message to an inbound queue are managed by the error handling process for the
queues.

Common causes of errors
Errors when processing messages in the outbound queue occur because there is a
problem delivering a message to the endpoint that is specified for the external
system. Errors when processing messages in an inbound queue are typically
related to a business rule validation or in the inbound processing of the enterprise
service.

For outbound processing, typical problems are disruptions of the communication
link to the external application, issues with the database table space, or file space
issues in the external application. To resolve an outbound error, you typically do
not need to modify the XML message.

The following table describes the most common message errors that you can
encounter and provides suggestions for correcting them. Correcting an error in the
XML message can create a mismatch in data between the sending and receiving
systems.

196 Integrating Data With External Applications

Error type Description Actions

Sequence error Caused by sequencing
problems between messages.
The system stops message
processing when a record
references another record
that is in a pending state.

This error is applied to
ensure that records process
in the correct order.
Depending on the direction
of the message transaction
and the processing logic that
applies, the processing can
self-correct the error when
the record that was in the
pending state has processed.

Data error Occurs because the data or
record does not exist in the
system database, and is not
part of the inbound messages
in the queue.

Add the missing data to the
system database.

Communication error Caused by communication
problems with the external
system from system failures
or network issues.

Restore communication with
the external system.

Message error Caused by erroneous
message data values.

v Change the transaction
status to HOLD.

v Correct the error XML
message.

v Change the transaction
status to RETRY to
reprocess the transaction.

Error research
When you receive an error notification, look at the XML message in the Message
Reprocessing application. Depending on the type of queue (sequential or
continuous), the number of messages in the queue can be zero, one, or more in the
Message Reprocessing application for an individual queue.

No messages in error exist

If no message in error exists in the Message Reprocessing application, the message
was retried and the error was not encountered again. The error message was
deleted when the message was successfully processed.

For example, an error occurs in an inbound receipt message due to an incorrect
general ledger (GL) account. After the error occurs, an online user enters that GL
account in the system. The message is reprocessed successfully and the data is
saved.

In another example, an outbound transaction encounters a communication error.
When the communication problem is resolved, the message is sent to the external
system and the message in error is deleted.

One or more messages in error exist

When an error occurs in a sequential queue (inbound or outbound), processing of
the queue stops until the error is resolved.

Integrating data with external applications 197

When an error occurs in a continuous queue, processing of the queue continues
and additional errors can occur before the initial error is resolved. Multiple
messages in error can exist in the Message Reprocessing application.

Message tracking
The Message Tracking application tracks and displays the processing history of
publish channel messages and queue-based enterprise service messages.

The Message Tracking application works with the Message Reprocessing
application. When you use the Message Tracking application, you can determine
which messages are flagged with an error. You then can select a failed message
and go to the Message Reprocessing application to take appropriate action to
correct erroneous data.

Message details:

When you enable message tracking, the integration framework writes all processed
messages to the MAXINTMSGTRK table. A status is assigned to each message
which represents its current position in the queue-based processing cycle.
Individual message events are displayed in the Message Details window.

When you enable message tracking, queue messages that existed before the
function was enabled are not identified by the message tracking logic. When you
disable message tracking, pre-existing queue messages that existed before the
function was disabled are identified but new messages are not identified.

Messages have the following attributes, and values are assigned based on the
originating enterprise service or publish channel data:
v Integration mode: The name of the integration mode used in processing the

message. For inbound messages, the system assigns an MXJMS default value.
For outbound messages, the system assigns the name of the endpoint that is
used in message processing.

v Operation: The processing operation the system applies to the tracked message,
which can be any of SYNC, UPDATE, QUERY, DELETE, CREATE, and
PUBLISH.

v System: The name of the external system that is associated with either the
enterprise service or publish channel.

v Integration component: The name of the enterprise service or publish channel.
v Adapter: The name of the adapter that is associated with either the enterprise

service or publish channel.
v Queue name: The name of the queue used by the integration framework to

process the message.

The following attributes are assigned values at the time the transaction record is
created.

Attribute Value

Received Datetime The date and time the message was received
in the queue.

Message ID Unique message identifier that is assigned
by the integration framework.

Search ID Message identifier that is assigned by an
external application and that is used in the
message searches.

198 Integrating Data With External Applications

Attribute Value

External Message ID Unique message identifier that is assigned
by an external application.

The following attributes have dynamic values that change based on the transaction
events.

Attribute Value

Current Status The most current processing status for the
tracked message.

Status The status that is associated with the
individual message event in the transaction
history.

Status Date The status date for the individual message
event in the transaction history.

Error The error message for the individual error
message event in the transaction history.

Message status values:

Every inbound and outbound queue-based message that is registered in the
Message Tracking application has a status value that indicates its position in the
transaction processing cycle.

The message tracking status indicates whether the message was successfully
received or processed. The message tracking status also indicates whether the
message was deleted, or flagged with errors.

Inbound message status

Inbound messages can have the following status values:

Status Description

ERROR Message processing failed due to validation
problems.

DELETED Message was deleted from the queue.

PROCESSED Message was successfully processed.

RECEIVED Message was successfully written to the
inbound queue.

Outbound message status

Outbound messages can have the following status values:

Status Description

ERROR Message processing failed due to validation
problems.

DELETED Message was deleted from the queue.

PROCESSED Message was successfully processed.

Integrating data with external applications 199

Status Description

RECEIVED Message was successfully written to the
outbound queue.

Message events:

The Message Tracking application tracks and displays inbound and outbound
queue-based transaction processing events. Transaction processing events trigger
the system to update the MAXINTMSGTRK table.

The following message table attributes are updated according to event type:
v STATUS
v STATUSDATETIME
v ERRORMSGR

The following inbound and outbound events update the MAXINTMSGTRK table:

Table 33. Tracked inbound and outbound events

Event Details

Message is written to queue A record is created in the message tracking
table when the integration framework first
writes the message to the queue. When the
message is successfully written to the queue,
the message record status is set to
RECEIVED.

If the integration framework encounters an
error when it is writing an inbound message
to the queue, it sends a message to the
process caller detailing the cause of failure.

Error in message processing The existing record in the message tracking
table. When the asset management system
encounters a processing error, it updates the
message record status to ERROR. If you
resend your message and a processing error
occurs again, the asset management system
maintains the ERROR message status.

End-of-queue processing The following transaction processing events
update the existing record:

v The asset management system
successfully completes the message
processing and updates the message
record status to PROCESSED. Because the
processing cycle is complete, no further
updates are made to the message tracking
table.

v If you delete the message from the queue,
the asset management system sets the
message record status to DELETED. The
message tracking table is no longer
updated.

200 Integrating Data With External Applications

Message tracking configuration:

You can track messages that are sent through publish channels or that are received
from enterprise services.

In the Publish Channels and Enterprise Services applications, you can configure
the following message tracking functions:
v Enable or disable message tracking.
v Store transaction messages in the database along with the tracking details.
v Specify the message data that the Message Tracking application search function

uses by using an XPATH expression.
v Uniquely identify messages with a single ID value by using an XPATH

expression.
v Identify messages with a search ID value by using an XPATH expression.

The XPATH expressions that are associated with the external message ID values
and the search ID values can identify multiple nodes in an XML file. In this case,
the message ID and search ID values are registered as a comma-separated list of
values. Database field lengths are applicable to external ID and search ID fields. If
necessary, you can adjust the length of these fields in the Database Configuration
application.

Stored messages

When you configure message tracking, messages and message tracking details are
saved in the database and can be viewed in the Message Reprocessing application.

External message tracking ID

Each inbound message has an external message identifier that is stored in the
MAXINTMSGTRK table. With the Message Tracking application, you can use this
external message ID to locate specific messages. The syntax that you use to identify
a message node must be a fully qualified XPATH expression.

To find all messages for the MXPERSONInterface enterprise service, specify the
following fully qualified XPATH expression in the External Message ID field:
/{http://www.ibm.com/maximo}SyncMXPERSON/@messageID

When a multi-noun inbound message is received, the integration framework uses
the XPATH expression for the external message ID to identify the message. If the
XPATH expression points to an element included in each one of the nouns in the
inbound message, the integration framework creates a multi-noun,
comma-separated list of external identifiers.

Search ID

By specifying an XPATH expression to identify nodes, the integration framework
can perform efficient multi-noun searches. The system stores the search identifier
in the MAXINTMSGTRK table.

To find all messages for the MXPERSONInterface enterprise service, create the
following fully qualified XPATH expression as the search ID:

Integrating data with external applications 201

/{http://www.ibm.com/maximo}SyncMXPERSON/{http://www.ibm.com/
maximo}MXPERSONSet/{http://www.ibm.com/maximo}PERSON/{http://www.ibm.com/
maximo}PERSONID

When a multi-noun inbound message is received, the integration framework uses
the XPATH expression for the search ID to identify the message. If the XPATH
expression points to an element included in each one of the nouns in the inbound
message, the integration framework creates a multi-noun, comma-separated list of
search identifiers.

Enabling message tracking:

Enable message tracking for outbound transactions in the Publish Channels
application and for inbound transactions in the Enterprise Services application.

Procedure

1. In the Publish Channels application or the Enterprise Services application,
select the channel or service that processes integration messages.

2. Select the Message Tracking action.
3. In the Message Tracking Setting window, select the Enable Message Tracking

check box.
4. Optional: Select the Store Message check box to store transaction messages.
5. Optional: In the External Message ID field, specify one or more XPATH

expressions to locate specific messages.
6. Optional: In the Search ID field, specify one or more XPATH expressions to

search for messages.

Cluster configuration
The integration framework can provide integration services across a cluster of
application servers. If the continuous queue on a single server is inadequate for
your message volume, you can add central processing units, hardware, and a
cluster configuration to improve message processing performance.

When you implement a server cluster, you can use multiple servers simultaneously
to process inbound messages. These messages are processed in the continuous
queues by using message-driven beans (MDBs). Cluster configurations facilitate the
processing of messages in large volumes.

JMS queues in a server cluster
In a cluster configuration, JMS queues are associated with one member of the
server cluster and access to the queues is provided by the Java Naming and
Directory Interface (JNDI) service.

The JDNI service is available across all the members on the cluster.

202 Integrating Data With External Applications

XML Message
(enterprise service)

HTTP / EJB / SOAP

Load Balancer

App
Server 1

JMS
Producer

App
Server 2

JMS
Producer

App
Server 3

JMS
Producer

Continuous
JMS Queue

App
Server 1

JMS
Consumer

App
Server 2

JMS
Consumer

App
Server 3

JMS
Consumer

Enterprise Service

Business Objects / DB

Multi-threaded processing
via multiple app servers
and MDBs as Consumers

Single-threaded, sequential
processing (FIFO) via
CRON Task as Consumer

Sequential
JMS Queue

All cluster members can produce messages into the sequential queue. A
single-threaded cron task reads the messages in the sequenetial queue to support
first-in-first-out processing.

The continuous queue is multi-threaded on the consumer side to support message
processing in high volumes. In this queue, the message processing order is not
considered.

Enterprise service messages that use the sequential queue are processed in a strict
sequential order. Message processing is single-threaded. Clustering does not
significantly impact the processing performance of messages through the sequential
queue.

Continuous queue on an application server cluster:

In a clustered environment, you can pin the continuous JMS queue to one member
of the cluster.

The following diagram shows an example of a cluster configuration on an
application server. The continuous queue receives JMS producer messages and
processes the JMS consumer messages.

Integrating data with external applications 203

XML File, Flat File,
Interface Table
Loading

XML Transaction
(enterprise service)

HTTP / EJB / SOAP

Load Balancer

App
Server 1

JMS
Producer

C
R

O
N

T
a

s
k
s

App
Server 2

JMS
Producer

App
Server 3

JMS
Producer

JMS
Queue

(Continuous)

JMS Server

App
Server 1

JMS
Consumer

App
Server 2

JMS
Consumer

App
Server 3

JMS
Consumer

Enterprise Service

Business Objects / DB

Example shows JMS
queue pinned to server2.
It may be pinned to any
server in the cluser.

Multi-threaded
processing via Message
Driven Beans (MDBs)

Example shows CRON
tasks running on server1.
They may run on any
server in the cluster.

In the example, three application servers exist in the clustered environment. The
continuous JMS queue is pinned to one member of the cluster.

The processing occurs when the integration framework receives enterprise service
messages by using HTTP, enterprise beans, and SOAP actions. The load balancer
directs the application server to drop enterprise service messages into the
continuous queue. Each member of the cluster places messages into the queue,
which exists on one member of the cluster.

An integration cron task delivers enterprise service messages from flat or XML files
and interface tables. The cron tasks that place messages into the queue can run on
any server in the cluster.

After messages are in the queue, all application servers can simultaneously pull
messages from the queue and process them into the system. Message-driven beans
must be enabled on each application server in the cluster.

Sequential queue on an application server cluster:

The sequential queue receives JMS producer messages and processes the JMS
consumer messages.

The following diagram shows one example of a cluster configuration on
application servers.

204 Integrating Data With External Applications

XML File, Flat File,
Interface Table
Loading

XML Transaction
(enterprise service)

HTTP / EJB / SOAP

Load Balancer

App
Server 1

JMS
Producer

C
R

O
N

T
a

s
k
s

App
Server 2

JMS
Producer

App
Server 3

JMS
Producer

JMS
Queue

(Sequential)

JMS Server

JMS CRON task may run
on any server in the
cluster App

Server 1

JMS
Consumer

CRON Task

App
Server 2

App
Server 3

Enterprise Service

Business Objects / DB

Example shows JMS
queue pinned to server2.
It may be pinned to any
server in the cluser.

Single-threaded,
sequential processing via
CRON Task

Example shows CRON
tasks running on server1.
They may run on any
server in the cluster.

In the example, three application servers exist in the clustered environment. The
sequential JMS queue is pinned to one member of the cluster.

The processing occurs when the integration framework receives enterprise service
messages by using HTTP, enterprise beans, and SOAP actions. The load balancer
directs the application server to drop enterprise service messages into the
sequential queue. Each member of the cluster places messages into the queue,
which exists on one member of the cluster.

An integration cron task delivers enterprise service messages from flat or XML files
and interface tables. The cron tasks that place messages into the queue can run on
any server in the cluster. Once messages are in the queue, the application server
that is running the JMS consumer cron task processes messages in a sequential
order.

Unlike the continuous queue, there is no multi-threading of messages by design. A
cluster implementation does not significantly impact the processing performance of
messages that process through the sequential queue.

Configuring the cron task
The interface table cron task, the data import cron task, and the JMS queue cron
task are cluster-aware functions. By default, the cron task framework runs a task
on a randomly chosen server. You can configure a cron task to run on a specific
application server within a server cluster. Use the donotrun parameter in the cron
task framework to control which servers the cron task runs on.

Integrating data with external applications 205

Configuring a message processing server
For high volumes of inbound messages, you can improve server efficiency by
moving inbound message processing to a separate application server or server
cluster.

Procedure
1. Deploy a separate application EAR file on the message processing server or

server cluster.
2. On the message processing application server or server cluster, use the

donotrun parameter in the cron task framework to control which servers the
cron task runs on.

3. Optional: Configure message-driven beans to pull data from the inbound
continuous queue. Do not enable message-driven beans for inbound processing
within the server or server cluster that is dedicated for online users. You can
run other background processing cron tasks on this server or server cluster.

4. Optional: Grant user interface access to users who use of the data import
feature.

Global directory configuration
In a cluster environment, if you configure a global directory for management of
integration files, the directory must be accessible to all members of the cluster.

Depending upon your use of the integration framework components, files may or
may not be written to the global directory. One of the main reasons for configuring
a global directory is to support the use of file-based endpoints. If you intend to use
file-based endpoints for invocation channels and messages are initiated by
application users that are configured in a UI cluster, all members of the cluster
must have visibility to the global directory.

To define the global directory, update the mxe.int.globaldir system property in
the System Properties application.

Access to services by inbound messages
Enterprise services, object structure services, and standard services can all function
in a server cluster.

An inbound transaction can access the relevant service with any of the following
communication methods:
v Java remote method invocation (RMI), Internet Inter-ORB Protocol (IIOP), and

enterprise beans
v HTTP and HTTPS servlet
v SOAP, HTTP, and HTTPS servlet

Enterprise beans

With a single server, the provider URL for accessing the JNDI tree is the single
server URL. With a server cluster, the provider URL can be the URL of any of the
servers that has the enterprise beans deployed. All members of the cluster share
the JNDI tree and any member of the cluster can look for and retrieve a cluster.

Following a cluster look up, the client retrieves a cluster-aware proxy of the
enterprise beans which load balances all the subsequent calls that use that proxy.
Load balancing happens transparently to the client code. There is no difference
between the code for a single server and for a cluster setup. A separate enterprise

206 Integrating Data With External Applications

bean is deployed for each type of service: object structure service, enterprise
service, and standard service.

HTTP servlet

The integration servlet is deployed across all members of the cluster. With a single
server configuration, the URL is the HTTP and HTTPS URL of that server. With a
cluster server configuration, the URL is the HTTP and HTTPS URL of the load
balancer for the cluster. A separate servlet is deployed for each type of service:
object structure, enterprise, and standard service.

The URL formats for each service are shown in the following table. The meaweb
variable in the URL represents the value you specify for the mxe.int.webappurl in
the System Properties application.

Service URL

Object structure service http://hostname:port/meaweb/os/object structure
name

Enterprise service (bypassing
queue)

http://hostname:port/meaweb/es/extsysname/
enterprise service name

Enterprise service (through the
queue)

http://hostname:port/meaweb/esqueue/extsysname/
enterprise service name

Standard service http://hostname:port/meaweb/ss/standard service
name

Web services

Integration web services are homogeneously deployed across all the server
members in the cluster. Web service access for a cluster is the same as for a single
server, except that the web service URL and Web Service Definition Language
(WSDL) URL point to the cluster instead of to a specific server in the cluster.

The following properties must point to the cluster URL:
v Web application URL mxe.int.webappurl

v UDDI registry inquiry URL mxe.int.uddiinurl

v UDDI registry publish URL mxe.int.uddipuburl

The URL to access a web service is http://hostname:port/meaweb/services/web
service name. The meaweb variable in the URL represents the value you specify for
the mxe.int.webappurl in the System Properties application.

Integration security
The integration framework includes support for J2EE authentication and for
component-level authorization.

Authentication security
You can configure J2EE authentication security for JMS queues, EJB, HTTP, and
web services. You can also configure authentication security for remote integration
APIs and for the Java handler classes for outbound routing.

Integrating data with external applications 207

Configuring J2EE security:

The integration framework supports basic J2EE security to restrict access based on
authentication and authorization.

Configuring J2EE restrictions for JMS queues:

The JMS queues that are used by integration processing support J2EE security,
based on user ID and password-based authentication and authorization. You can
prevent unauthorized access to the queue by assigning a user ID and password to
the Java Naming and Directory Interface (JNDI) name, even if the JNDI name of
the queue is known.

About this task

Multiple queues can use the same or different user identifications.

Procedure

1. On the administrator console for the server, specify user ID and password
values for the following properties, to enable J2EE restrictions:
v java.naming.security.principal (user ID)
v java.naming.security.credentials (password)

2. In the External Systems application, select the Add/Modify Queues action and
specify the same user ID and password that you provided in Step 1. This step
provides access to the queue to the integration producer and consumer
programs.

3. To provide access to the continuous queue, under the <enterprise-beans>
section in the ejb-jar.xml file, add the <security identify> elements shown in
bold text:
<enterprise-beans>

<message-driven id="MessageDriven_JMSContQueueProcessor_1">
<ejb-name>JMSContQueueProcessor-1</ejb-name>
<ejb-class>psdi.iface.jms.JMSContQueueProcessor</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<env-entry>

<env-entry-name>MESSAGEPROCESSOR</env-entry-name>
<env-entry-type>java.lang.String </env-entry-type>
<env-entry-value>

psdi.iface.jms.QueueToMaximoProcessor
</env-entry-value>

</env-entry>
<security-identity>

<run-as>
<role-name>maximouser</role-name>

</run-as>
</security-identity>

</message-driven>

4. Under the <assembly-descriptor> section in the ejb-jar.xml file, add the
<security-role> elements shown in bold text:
<assembly-descriptor>

<security-role>
<role-name>maximouser</role-name>

</security-role>
<container-transaction>

<method>
<ejb-name>JMSContQueueProcessor-1</ejb-name>

208 Integrating Data With External Applications

<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

Securing enterprise bean access:

If J2EE Authentication on the system is enabled, you must enable the security for
each enterprise bean in the deployment descriptors.

About this task

Under the <enterprise-beans> section of the ejb-jar.xml file, three integration EJBs
are deployed with a default value of 1, which indicates that no authentication is
required.

The <ejg-name> to service mapping is:

<ejb-name> Service

enterpriseservice Enterprise Service

mosservice Object Structure Service

actionservice Standard Service

Procedure

1. To force authentication, change the ALLOWDFLTLOGIN value to 0 (false), for
each of three services, indicated in bold in the following code example:
<enterprise-beans>
<session id="Session_enterpriseservice">

<ejb-name>enterpriseservice</ejb-name>
<home>psdi.iface.gateway.MEAGatewayHome</home>
<remote>psdi.iface.gateway.MEAGateway</remote>
<local-home>psdi.iface.gateway.MEAGatewayHomeLocal</local-home>
<local>psdi.iface.gateway.MEAGatewayLocal</local>
<ejb-class>psdi.iface.gateway.MEAGatewayBean</ejb-class>
<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>
<env-entry>

<env-entry-name>ALLOWDFLTLOGIN</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>0</env-entry-value>

</env-entry>
<security-role-ref>

<description>
Application Users

</description>
<role-name>maximouser</role-name>
<role-link>maximouser</role-link>

</security-role-ref>
</session>
<session id="Session_mosservice">

<ejb-name>mosservice</ejb-name>
<home>psdi.iface.mos.MOSServiceHome</home>
<remote>psdi.iface.mos.MOSServiceRemote</remote>
<local-home>psdi.iface.mos.MOSServiceHomeLocal</local-home>
<local>psdi.iface.mos.MOSServiceLocal</local>
<ejb-class>psdi.iface.mos.MOSServiceBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>

Integrating data with external applications 209

<env-entry-name>ALLOWDFLTLOGIN</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>0</env-entry-value>

</env-entry>
<security-role-ref>

<description>
Application Users

</description>
<role-name>maximouser</role-name>
<role-link>maximouser</role-link>
</security-role-ref>
</session>

<session id="Session_actionservice">
<ejb-name>actionservice</ejb-name>
<home>psdi.iface.action.MAXActionServiceHome</home>
<remote>psdi.iface.action.MAXActionServiceRemote</remote>
<local-home>psdi.iface.action.MAXActionServiceHomeLocal</local-home>
<local>psdi.iface.action.MAXActionServiceLocal</local>
<ejb-class>psdi.iface.action.MAXActionServiceBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>

<env-entry-name>ALLOWDFLTLOGIN</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>0</env-entry-value>

</env-entry>
<security-role-ref>

<description>
Application Users

</description>
<role-name>maximouser</role-name>
<role-link>maximouser</role-link>

</security-role-ref>
</session>

Client programs call the secure version of the enterprise bean methods for each
service type:
v Enterprise service: secureProcessExtnernalDataAsync(..) ,

secureProcessExtnernalDataSync(..)
v Object structure service: secureProcessMOS(..)
v Standard service: secureAction(..)

2. To create a secure context for calling the enterprise bean, perform either one of
the following tasks:
v Add the following code to to the client code:

Properties env = new Properties();
.
.
.
if(userid != null && password != null)
{
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_PRINCIPAL, userid);
}

Context ctx = new IntialContext(env);
//instead of using the default IntialContext() constructor

v Use the default InitalContext constructor to pass the security information
through –D parameters in the .bat/.sh script that launches the client:
–Djava.naming.security.principal=<username>
–Djava.naming.security.credentials=<password>

210 Integrating Data With External Applications

The SSL version of the Internet Inter-ORB protocol performs data encryption
in the provider URL, while the system communicates with the enterprise
bean.

Securing the HTTP servlet:

The HTTP servlet is a J2EE component that handles inbound HTTP posts. To
secure the HTTP servlet, you must first secure the enterprise bean. You can use
HTTP basic authentication to secure the HTTP servlet. Authorized users, with a
valid user name and password can post an XML transaction to the system.

About this task

To enable HTTP basic authentication, modify the web.xml file of the Web
application:
v Remove the comments from the <security-constraint> section of the integration

servlets. There are three <security-constraint> sections, one for each type of
service: enterprise service, object structure service, and standard service.

The <web-resource-name> to service mapping is:

<web-resource-name> Service

Enterprise Service Servlet Enterprise Service

App Service Servlet Standard Service

Object Structure Service Servlet Object Structure Service

Procedure

1. In the web.xml file, uncomment the security constraint sections for each service
type, as in the following code example:
<!--
<security-constraint>
<web-resource-collection>
<web-resource-name>Enterprise Service Servlet</web-resource-name>
<description>

Enterprise Service Servlet (HTTP POST) accessible by authorized users
</description>
<url-pattern>/es/*</url-pattern>
<url-pattern>/esqueue/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>

Roles that have access to Enterprise Service Servlet (HTTP POST)
</description>
<role-name>maximouser</role-name>
</auth-constraint>
<user-data-constraint>
<description>data transmission gaurantee</description>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>

<security-constraint>
<web-resource-collection>
<web-resource-name>App Service Servlet</web-resource-name>
<description>

App Service Servlet (HTTP POST) accessible by authorized users
</description>

Integrating data with external applications 211

<url-pattern>/ss/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>

Roles that have access to App Service Servlet (HTTP POST)
</description>
<role-name>maximouser</role-name>
</auth-constraint>
<user-data-constraint>
<description>data transmission gaurantee</description>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>

<security-constraint>
<web-resource-collection>
<web-resource-name>Object Structure Service Servlet</web-resource-name>
<description>

Object Structure Service Servlet (HTTP POST) accessible by authorized users
</description>
<url-pattern>/os/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>

Roles that have access to Object Structure Service Servlet (HTTP POST)
</description>
<role-name>maximouser</role-name>
</auth-constraint>
<user-data-constraint>
<description>data transmission gaurantee</description>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>

-->

2. Verify that the <security-role> section in the web.xml file is not commented out,
as in the following example code:
<security-role>

<description>An Integration User</description>
<role-name>maximouser</role-name>

</security-role>

3. Change the value from 0 to 1 in the useAppServerSecurity <env-entry-name>
section, as in the following example:
<description>

Indicates whether to use Application Server security or not
</description>
<env-entry-name>useAppServerSecurity</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>1</env-entry-value>
</env-entry>

What to do next

You can securely deploy a web service by using a Secure Socket Layer (SSL) for
HTTPS posts. Configure the SSL on the application server with the appropriate
digital certificates.

212 Integrating Data With External Applications

Securing web services:

You can secure integration web services by using HTTP basic authentication in
standard J2EE security. These security settings provide access to web services to
authorized users with a valid user name and password.

Procedure

1. Similar to the procedure for securing the HTTP servlet, in the web.xml file,
uncomment the <security-constraint> section for the web service invocation, as
in the following example
<security-constraint>

<web-resource-collection>
<web-resource-name>Integration Web Services</web-resource-name>
<description>

Integration Web Services accessible by authorized users
</description>
<url-pattern>/services/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<description>
Roles that have access to Integration Web Services

</description>
<role-name>maximouser</role-name>

</auth-constraint>
<user-data-constraint>

<description>data transmission gaurantee</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

2. Verify that the <security-role> section in the web.xml file is not commented out,
as in the following example code:
<security-role>

<description>An Integration User</description>
<role-name>maximouser</role-name>

</security-role>

3. Change the value from 0 to I in the useAppServerSecurity <env-entry-name>
section, as in the following example:
<description>

Indicates whether to use Application Server security or not
</description>
<env-entry-name>useAppServerSecurity</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>1</env-entry-value>
</env-entry>

4. For web service invocation, ensure that the client program uses the following
user name and password calls in the JAX-RPC Call object:
call.setProperty(Call.USERNAME_PROPERTY, username);
call.setProperty(Call.PASSWORD_PROPERTY, password);

What to do next

You can securely deploy a web service by using a Secure Socket Layer (SSL) for
HTTPS posts. Configure the SSL on the application server with the appropriate
digital certificates.

Integrating data with external applications 213

Interface table security:

Interface tables use the default database authentication and authorization. If
authentication and authorization are in effect, external programs that read or write
to the interface tables must provide proper authorization. To read from and write
to the interface tables, the USERNAME and PASSWORD values are configured for
the endpoint that implements the interface table handler.

Securing remote integration APIs:

Some MicService remote APIs secure access by forcing the user of those methods
to provide the UserInfo object. If a valid UserInfo object is not provided, an error
occurs and the call is not completed.

The following remote methods are protected because they either provide sensitive
information or perform sensitive data transaction processing:
v exportData(..)
v deleteQueueData(..)
v processExternalData(..) (both versions)
v query(..)
v viewQueueData(..)
v loadData(..)
v loadSystemData(..)
v processObjectStructure(..)
v routeData(..)

To run these methods, the caller must retrieve a valid UserInfo object and pass it to
the method to gain access to the secure layer.

A UserInfo object is a serialized object that contains user details including user,
password, locale, language, and time zone information, that is used for security
purposes.

The system uses Java Remote Method Invocation (RMI) and Java Remote Method
Protocol (JRMP). You can communicate to the system services by using a secure
version of JRMP protocol using SSL.

Outbound router handler security:

The outbound router handlers have support for authorization and confidentiality.
The enterprise bean, HTTP, JMS, web service, and interface table handlers have
support for security.

Authorization security
You can configure authorization security at application-level, object-level, or at the
level of a method defined in a standard service. After user authentication
completes, the integration framework checks that the user has been granted the
authority to send messages to the target application, object, or method.

Object-level authorization

Object-level authorization is based on the security configuration set in the Data
Restrictions tab of the Security Groups application. If an object or attribute is
marked as read-only or hidden, inbound message data processing is limited to

214 Integrating Data With External Applications

queries. You cannot insert, update, or delete data in the relevant object or attribute.

Application-level authorization

You configure application-level authorization in the Object Structures application.
In the Authorized Application field, specify the application to authorize. The
specified application and the user group of the integration message user together
provide authorization for inbound integration messages for both object structures
and enterprise services. The combination of application and user group also
provide authorization for the export of data related to this object structure.

If you use the REST API, you might need to configure application-level
authorization to access business object resources.

Standard service authorization

Standard service authorization does not support the use of a condition that you
associate with the signature option. Any condition that you assign is ignored.

You can configure a standard service transaction to take on the same security
profile for the integration user as if that user entered the transaction through an
application. This level of authorization requires manual configuration. The
application service must have a properly annotated method and the service must
be registered in the Database Configuration application. Assign a signature option
to a standard service to limit access to the users or groups that are authorized for
the selected option.

Run a SQL script that updates the MAXSERVSECURITY table with the details of
the standard service to authorize. The insert statement for the
MAXSERVSECURITY must include the fields listed in the following table.

Field Description

MAXSERVSECURITYID A unique ID that is numeric. You can, for
example, query the
max(MAXSERVSECURITYID) from
MAXSERVSECURITY and use the next
sequential value.

ROWSTAMP A unique ID that is numeric. You can, for
example, query the max(ROWSTAMP) from
MAXSERVSECURITY and use the next
sequential value.

SERVICENAME The service name registered in the Database
Configuration application
(MAXSERVICE.SERVICENAME).

APP The application name where the signature
option is configured to (MAXAPPS.APP).

METHODNAME The name of the annotated method in the
application service.

OPTIONNAME This value is a combination of the signature
option table for the application and the
signature option
(SIGOPTION.OPTIONNAME).

Related concepts:

Integrating data with external applications 215

“REST API” on page 226
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli's process automation engine.

Language support
Your database can contain some elements, such as descriptions and long
descriptions, in multiple languages. Publish channels and enterprise services can
include these translated columns. The integration framework also supports the use
of bidirectional language formats.

A single database can contain data in multiple languages. You specify the base
language when you install the application. If your system uses a language that
differs from the base language, you can enable the integration framework to send
and receive data that is not in the base language data.

Default processing of multiple languages
When you log in, you can choose a language code other than the base language for
the system. In any application, you can then enter language-specific values for
columns that are designated as translatable.

By default, outbound transactions contain the applicable column values in the
language that is associated with the login session. The language values display
whether the transaction is initiated by an application or the data export feature.
For example, if the base language of your system is English, you can log in as a
French user and update an item record with a French description. The outbound
message contains the item description in French, even when the description also
exists in English, or a third language.

If a database table contains translatable columns, the database contains a
corresponding table called L_tablename, for example, ITEM and L_ITEM. The
L_tablename table stores the non-base language values for every translated column
except the long description. Long descriptions in all languages are in the
LONGDESCRIPTION table.

To include translated values in the output XML, include the L_tablename and
LONGDESCRIPTION objects in the applicable object structures. Provide the base
language values as a service input to object structures that have the L_tablename
as part of their object definition. Your service input must be in the core object, and
all other languages must be in the additional language enabled object.

For example, when English is the base language, the ITEM table contains the
English description of an item and the L_ITEM table contains the French and
German descriptions of that item. The LONGDESCRIPTION table contains the
English, French, and German long descriptions.

When you add the L_tablename object to an object structure, assign the same value
to the transLanguage and baseLanguage attributes. Otherwise, the base language
values are not available and are processed for the multilanguage-enabled fields.

Multilanguage attributes
The root element of the XML structure for services and channels includes language
attributes that specify the language attributes for the record.

The following language attributes are used:

216 Integrating Data With External Applications

v The baseLanguage attribute identifies the base language of the system or
application that generates outbound XML. For inbound transactions (input
XML), this attribute is not validated.

v Output XML includes the langenabled attribute on every translatable column, as
shown in the following example:
<DESCRIPTION langenabled="1">Item 1 description</DESCRIPTION>

v The transLanguage attribute identifies the language in which the values for
applicable multilanguage fields are specified. If this attribute is missing or does
not contain a value, all data is assumed to be in the base language. If the
transLanguage value cannot be interpreted, or if the value does not identify a
valid language, an error is returned to the service requester.

Bidirectional language support
The integration framework supports bidirectional languages such as Arabic and
Hebrew and enables data exchange with external systems that use different
bidirectional language formats. Bidirectional languages combine characters that you
read from right to left with some characters, such as numbers or dates, that read
from left to right.

The integration framework can transform the bidirectional formats of all inbound
and outbound data to and from the bidirectional format specified for the external
system. The transformations apply to synchronous and asynchronous
communications for enterprise services, object structure services, and standard
services. You can also transform the bidirectional formats of files you import with
a cron task or when you use the data import feature.

Bidirectional language formats
The default bidirectional formats used by the integration framework are based on
Unicode standards. These formats can differ from the formats used by external
systems.

Bidirectional formats have five parameters.

Parameter Value Flags Default Details

Text Type v Implicit

v Visual

v I

v V

I: Implicit (logical)

Text Orientation v LeftToRight

v RightToRight

v ContextualLeftToRight

v ContextualRightToLeft

v L

v R

v C

v D

L: LeftToRight

Text Symmetric
Swapping

v On

v Off

v Y

v N

Y: On

Text Shaping v Not Shaped

v Shaped

v Isolated

v N

v S

v B

N: Not Shaped Arabic only

Numerals Shaping v National

v Nominal

v ContextualNational

v ContextualNominal

v H

v N

v C

v T

N: Nominal Arabic only

Integrating data with external applications 217

Configuring bidirectional language support for external systems
Specify the bidirectional language format used by an external system to enable the
correct transformation of data to (and from) the default format.

Procedure
1. Optional: Select the Bidirectional Format action in the External Systems

application for enterprise services or in the Invocation Channels application for
object structure services.

2. Select the bidirectional language format used by the external system from the
list of options and click OK.

Results

After setting the bidirectional language format used by an external system,
transformation to the appropriate format occurs automatically during integration
processing.

Exporting and importing file-based data
The integration administrator can initiate export and import data from within the
External Systems application to support, for example, integrating data using files.
The import process includes the ability to preview a data load from a file to
validate the data prior to saving it to the database. The import process also
includes an option to manage errors that result from file loading in the same file
format as the imported file

You can use file-based error management as an alternative to managing errors
through the Message Reprocessing application. Importing data from files, in flat
file or XML format, can be done on a scheduled basis using a predefined cron task.
Additionally, administrators can enable an application for export and import, and
users can then export and import data directly from within the enabled
application.
Related concepts:
“Error management with file-based data import” on page 192
The integration framework supports error management with the Message
Reprocessing application which allows you to review, correct, reprocess, and delete
messages that go in error when processed from an inbound queue. When data is
imported from an XML file or a flat file, a second option is available that manages
errors using a downloaded file instead of the Message Reprocessing application.

Exporting and importing data in the External Systems
application

You can initiate a data export in the Publish Channels tab of the External Systems
application. You can initiate a data import in the Enterprise Services tab of the
External Systems application.

Exporting file-based data
With the data export feature, you can perform a bulk export of message data from
a file to an external system. You can initiate the export process for each publish
channel that is associated to an external system.

218 Integrating Data With External Applications

Before you begin

In a multitenancy environment, you can use the data export feature only if the
system provider provides you with access to a file server that is accessible by the
application server. You must then configure a file-based endpoint to point to the
location of this file server.

You must enable both the external system and the publish channel before you can
export data. The data for export must either be in an XML file format that adheres
to the object structure schema or in a delimited flat file, such as comma separated,
that is a flattened version of the object structure schema format.

About this task

The optional SQL query that you enter in the Export Condition field, can affect the
size of the exported XML message. You can filter the content to limit the amount of
data that is being exported. The export process performs the standard outbound
processing on the result set of the query for the selected publish channel.

Procedure
1. In the External Systems application, click the Publish Channels tab and select

the publish channel that you want to export.
2. In the End Point field, specify a file-based endpoint handler, for either XML file

or flat file format.
3. Click Data Export.
4. Optional: Enter a SQL query in the Export Condition field. The query must be

against the primary or top-level object in the publish channel object structure.
5. Optional: Specify an integer value in the Export Count field to limit the

number of records that are contained in the exported file. If the result of the
query contains more records than the number you specify, those records are not
included in the exported file.

6. Click OK to begin the data export process.

What to do next

When the data export is executed, the selected data is formed into a message and
dropped into the outbound queue that is configured for the publish channel and
its corresponding external system. The message is then processed from the
outbound queue to the configured endpoint. If an error occurs when delivering a
message to the endpoint, you can manage and view the data export messages that
are flagged with an error in the Message Reprocessing application.

Importing file-based data
You can use the data import feature to load data from either XML or flat, delimited
files, to update the Maximo database. You can preview and validate the data prior
to loading it and committing it to the database. You can choose to manage errors
with the Message Reprocessing application or by extracting errors to a file format
that is the same as the imported file format.

Before you begin

Before data can be imported, if you plan to import data from a flat file, such as a
.csv file, the enterprise service object structure must support flat file structures.
Ensure that the Support Flat File Structure check box is selected on the associated
object structure record in the Object Structures application. You also must enable

Integrating data with external applications 219

both the external system and the enterprise service before you can import data.

About this task

The data that you import must be in a delimited flat file, such as comma
separated, or an XML file format. The data import process can use a predefined or
user-defined enterprise service.

Procedure
1. In the External Systems application, display the external system that contains

the enterprise service from which you want to import data.
2. On the Enterprise Services tab, select the enterprise service from which you

want to import data.
3. Click Data Import.
4. Optional: Select the Import Preview check box to examine the data before

importing and committing the data to the database. Use the preview option to
sample data records. This feature is not intended to support a large file
containing hundreds of records. Processing synchronously processes the file to
the business objects and returns any error messages encountered, without
committing any updates to the database.

5. Specify the type of file that you want to use for the file import.

Option Description

XML File Imported data is in XML format.

Flat File Imported data is in a delimited flat file. If
necessary, modify the Delimiter and Text
Qualifier values.

6. In the Specify Import File field, enter the file name path the imported file uses
for identification and storage.

7. Select the File-based Error Management check box if you want to manage any
errors you encounter through a file in the same format as the file being
imported. This option is an alternative to managing errors with the Message
Reprocessing application

8. Click OK to begin the import data process.

What to do next

When the data import is executed, the file that is selected for import is formed into
multiple messages and dropped into the inbound queue that is configured for the
enterprise service and its corresponding external system. The messages are then
processed from the inbound queue to the application objects for updating. The
processing of messages from an inbound queue requires the enablement of the JMS
cron task when the sequential queue is used or the enablement of Message Driven
Beans for the continuous queue. If errors occur when processing a file, you can
manage and view the data import messages that are flagged with an error in the
Message Reprocessing application.

Cron tasks for processing inbound data
If you want to schedule file loads rather than using the data import window, you
must create, configure, and enable the XMLFILECONSUMER cron task and the
FLATFILECONSUMER cron task before cron task message processing can occur.

220 Integrating Data With External Applications

XMLFILECONSUMER cron task
The XMLFILECONSUMER cron task is the mechanism that you use to load XML
files without any application user intervention.

The XMLFILECONSUMER cron task has the following predefined parameters:

Parameter Description

EXTERNALSYSTEM A required parameter value that identifies
the external system value that the cron task
data load process uses.

SOURCEDIRECTORY A required parameter value that defines the
directory where source files are loaded. This
directory must exist on the application
server.

ENTERPRISESERVICE A required parameter value that identifies
the enterprise service name that the cron
task uses to process all files that are located
in the source directory.

FILENAME An optional parameter value that determines
whether the cron task data load process
selects source files based on its file name.

USEREXITCLASS An optional custom processing class value
that defines additional cron task capability
(for example, file load order).

TARGETENABLED Ensure that the value is at the default of 0
(false). The functionality of this flag is
superseded by the donotrun functionality.
Use the donotrun parameter in the cron task
framework to control which servers the cron
task runs on.

ISFILEEXTRACT When set to 1 (true), this parameter
indicates that file-based error management is
used for inbound message processing.

All XML files that are available in the source directory are associated with a
specific external system – enterprise service when you add a value to the
EXTERNALSYSTEM, SOURCEDIRECTORY, and the ENTERPRISESERVICE
parameters. These XML files also are loaded into the integration framework.

The files that match the cron task file name property are associated with a specific
external system – enterprise service and are loaded into the system when you add
a value to the EXTERNALSYSTEM, SOURCEDIRECTORY, ENTERPRISESERVICE,
and FILENAME parameters

FLATFILECONSUMER cron task
The FLATFILECONSUMER cron task is the mechanism that you use to load flat
files without any application user intervention.

Integrating data with external applications 221

Cron task parameters

The FLATFILECONSUMER cron task has the following predefined parameters:

Table 34. FLATFILECONSUMER cron task parameters

Parameter Description

SOURCEDIRECTORY A required parameter value that defines the
directory where source files are loaded. This
directory must exist on the application
server.

DELIMITER A required parameter that indicates the
character that is used as field delimiter in
the flat file. The default value is , (comma).

USEREXITCLASS A custom processing class value to enable
additional cron task capability (for example
file load order).

TEXTQUALIFIER A required parameter value that defines the
character that is used as text qualifier in the
flat file. The default value is “ (double
quotation marks).

TARGETENENABLED Ensure that the value is at the default of 0
(false). The functionality of this flag is
superseded by the donotrun functionality.
Use the donotrun parameter in the cron task
framework to control which servers the cron
task runs on.

ISFILEEXTRACT When set to 1 (true), this parameter
indicates that file-based error management is
used for inbound message processing.

All files available at the source directory are processed by the
FLATFILECONSUMER cron task when you add a value to the
SOURCEDIRECTORY parameter. The external system and the enterprise service
are identified from the first record in the flat file that is imported, which is part of
flat file definition.

Cron task processing properties

The FLATFILECONSUMER cron task uses the following processing properties for
inbound messages:
v File processing order - The order in which files are loaded on to the server that

is determined by the XML file time stamp. The cron task user exit class can be
used to overwrite the inbound message processing logic.

v File split - Multi-noun files that are processed by the FLATFILECONSUMER
cron task are split before they are written to the queue. The cron task identifies
if the file that is loaded is a multi-noun XML file. If the XML file is a multi-noun
file, the integration framework uses the enterprise service key columns to
identify where the file split occurs. For example, PONUM and SITE in the
MXPOInterface enterprise service.

v Queue processing - The FLATFILECONSUMER cron task identifies the queue in
which the flat file is loaded. The location is based on the queue (continuous or
sequential) specified at the external system and enterprise service level.

222 Integrating Data With External Applications

The cron task creates an index file (recovery_filename.txt) that contains a
reference to the last successfully processed noun when you process a multi-noun
file. The entry in the index file is updated when the noun is successfully
committed to the queue. Index files are available in the RECOVERY folder which is
created in the cron task source directory.

The FLATFILECONSUMER cron task uses the index file name to identify the file
that was processed before the server or queue problem was encountered. The cron
task continues to process the XML file starting at the last successfully committed
noun in the index file. Errors that are identified after a message is successfully
written to an inbound queue must be resolved in the Message Reprocessing
application.

Configuring an application for data export and import
To enable application-based data import and export you must define the content of
an object structure and enable this object structure for import and export.

Defining the object structure content
Application users can be granted access to export or import data directly from an
application. An administrator can identify an appropriate object structure for an
application and grant either export or import (or both) capabilities for users to
manage application data in a file, such as a .csv file, that can be maintained in
spreadsheet.

About this task

Determine the object structure to use for the integration transactions and then
modify the content of the object structure to limit data exchange to the content that
is required.

Procedure
1. In the Application Designer, open the application that you want to enable and

note the value in the Main Object field in the header area. This value must be
the main object that you use for the object structure.

2. In the Object Structures application, specify the name of the main object in the
Object Structure field to filter for object structures based on this object. If the
search does not return any object structures based on the main object, you
must create an object structure and the following steps do not apply.

3. If the search returns multiple object structures, select an object structure where
the value in the Consumed By field is set to Integration.

4. Review the content of the object structure and ask the following questions:
a. Is the main object of the object structure the same as the main object of the

application that you want to enable for data export and import?
b. Does the object structure include child objects that contain data that users

do not need to import or export? For example, the MXPERSON object
includes the PHONE, EMAIL, and SMS child objects. Your users may want
to import and export data for the PERSON and PHONE objects only.

5. After you review the content of the object structure, you can choose to use the
predefined object structure with all of its existing content or to duplicate this
object structure and modify its content. If you make changes to a predefined
object structure, it can affect any other integration scenarios that use this
object structure. Duplicating the object structure and using this as a template
does not cause unexpected behavior for other integration users.

Integrating data with external applications 223

6. Assuming that you duplicate the object structure to provide a new object
structure for this scenario, delete any child objects that are not necessary for
your integration users.

7. For each object that remains in the object structure, select the Include/Exclude
Fields option in the Select Action menu, and deselect all fields that users do
not require to import or export. This step limits the data fields to only those
needed by the application users.

8. If delimited flat files are required (for use in a spreadsheet), select the Support
Flat Structure check box. This step activates a validation to ensure that every
column for every object in the object structure has a unique name. If the
validation fails, an Alias Conflict indicator is set.

9. If the object structure contains an alias conflict, select the Add/Modify Alias
option in the Select Action menu to assign a unique alias for any field name
where a duplicate exists. Alias conflicts do not exist in any of the predefined
object structures.

10. Save the object structure.

What to do next

The content of the object structure is now configured and you can grant
application access to it in the Object Structures application.

Enabling data import and export in an application
After you define the content of the object structure, you must enable an application
for data import and export. Enabling data import is a separate procedure to
enabling data export. Because the procedures are separate, you can enable some
users to export data, enable other users to import data, or enable a separate set of
users to import and export data.

Procedure
1. In the Object Structures application, select the object structure that you want to

enable.
2. Select the Add/Modify Application Export Support action.
3. In the Add/Modify Application Export Support window, click New Row. In

the Details section, the value in the Application field defaults to the application
that has the same main object as the main object of the object structure.

4. Specify either XML File or Flat File as the format for data export files.
5. In the Maximum Count field, you can specify a value that limits the number of

rows that can be exported during a single execution. Even if the user selects
1000 records, if the limit is set to 100, then only 100 rows are exported. A value
of 0 or null allows the processing of an unlimited number of rows.

6. Select the Is Default check box if you enable multiple object structures for
application export and you want this object structure to be the default.

7. Click OK to save the export configuration.
8. Select the Add/Modify Application Import Support action and repeat the same

procedures to configure data import for the application.
9. Select the user group for the application users in the Security Groups

application and grant access to the Application Export option, the Application
Import option, or to both options.

Initiating data export and import in an application
After enabling data export and import in an application, icons are added to the
toolbar of the application for starting the transactions.

224 Integrating Data With External Applications

Starting data export in an application:

After you enable data export for an application, users can initiate export
transactions from within the application user interface.

Procedure

1. In the List tab of the application, select the data for export in one of the
following ways:
v Use the filter options to filter for a set of records to export, and click the

Application Export icon in the toolbar.
v Select a specific record to export, and click the Application Export icon. This

option exports only the data for a single record.
2. In the Data Export window, review the export settings and make any necessary

adjustments:
a. Optional: Specify a different value in the Object Structure field if you do

not want to use the default object structure for the export. You can specify
an alternate object structure only if another object structure has been
enabled for this application. If you specify an alternate object structure, the
window refreshes to include the Export Configuration section where you
can configure additional settings.

b. Optional: If the value in the Selected to Export field exceeds the value in
the Export limit field, you can cancel the export and use a different filter to
reduce the number of records to export. The value in the Export limit field
is set by the administrator, and cannot be exceeded, regardless of the
number of records selected.

3. Optional: In the Export Configuration section, (expanded only if you specified
an object structure that is not the default), specify the data format:
a. If you select XML format, specify the operation for the export, for example

Sync.
b. If you select Flat File format, specify values in the Delimiter and Text

Qualifier fields.
4. Click OK to start the export. A Save dialog box opens in which you can specify

where to save the file. For a flat file to open in a spreadsheet application, you
can change the filename to use the .csv suffix. If the Save dialog box does not
open, change the security settings of your browser to enable automatic
prompting for downloads.

Starting a data import in an application:

After you enable data import for an application, users can initiate import
transactions from within the application user interface.

Procedure

1. From anywhere in the application, click the Data Import icon in the toolbar.
2. Optional: In the Data Import window, specify a different value in the Object

Structure field if you do not want to use the default object structure for the
import. If you specify an alternate object structure, the Import Configuration
section expands, where you must perform additional configurations.

3. Optional: If you specified an alternate object structure, in the expanded Import
Configuration section, specify the following values:
a. If you specify XML format, no additional settings are required because the

incoming XML file specifies the operation, language code and action code.

Integrating data with external applications 225

b. If you specify the Flat File format, you can specify values in the Delimiter,
Text Qualifier, Action, and Language Code fields, or you can use the
default values.

4. Optional: Review the value in the Import limit field. You cannot change this
value. If the limit is set, for example, to 100 records, and the import file
contains 200 records, only the first 100 records are imported.

5. Click Browse to navigate to the import file, and select it.
6. Optional: If you select Import Preview, when you run the import, the file is

processed by the business objects but the data is not saved to the database. You
can use this option to test the data load and validate that there are no errors
prior to loading. Any errors are displayed and you can apply corrections to the
input file and attempt the import again.

7. Click OK to start the import. Because data import is a synchronous process,
you must wait in the user interface until the load is complete and a
confirmation message appears. If the load encounters errors, no data is loaded,
as the file is processed as a single transaction with a single commit.

REST API
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli's process automation engine.

The REST API is part of the integration framework, and you can use it to integrate
external applications with process automation engine applications. The REST API
exposes business objects and integration object structures as REST resources. The
REST API can provide resource data in either XML or JavaScript Object Notation
(JSON) format. External applications can use the REST API to query and update
application data.

REST API resources can be used without any configuration. The object structures
that the REST API can query or update have a value of INTEGRATION in the
Consumed By field in the Object Structures application.

The REST API supports create, query, update, and delete operations on resources
by using standard HTTP GET, POST, PUT, and DELETE methods.
Related information:

Using REST Api Details (opens in a new browser window or tab)

RESTing with Maximo (opens in a new browser window or tab)

REST API framework
The REST API is part of the integration framework and handles requests from
external consumers.

The following diagram provides an overview of how the REST API handles
requests.

226 Integrating Data With External Applications

https://www.ibm.com/developerworks/mydeveloperworks/blogs/a9ba1efe-b731-4317-9724-a181d6155e3a/entry/using_rest_api_details2?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/a9ba1efe-b731-4317-9724-a181d6155e3a/entry/resting_with_maximo1?lang=en

When an external consumer initiates a request, a REST API controller directs the
resource request to the appropriate resource handler. The resource handler interacts
with resources to execute the request. When the request is complete, the resulting
resource or resource collection is processed by the resource serializer. The resource
serializer returns the representation as the resource response. Serializers are
provided for XML and JSON.

Because the REST API is within the integration framework, the REST API can use
process automation engine authentication, authorization, and system properties.

The REST API controller is a servlet. Performance and tuning for load and
scalability is done at the application server level as it is for other web components.

Supported representations
The REST API supports XML and JSON as representations. Representations are
supported by the implementation of serializer classes that are registered in system
properties.

The XML and JSON representations are registered in the following REST API
system properties:
v mxe.rest.serializer.mbo.xml

v mxe.rest.serializer.os.xml

v mxe.rest.serializer.mbo.json

v mxe.rest.serializer.os.json

You can extend serializers for custom processing. You can create serializers for
existing resource types, and for individual instances of business object resources or
object structure resources.

For object structure resources, the XML format for the REST API is similar to the
format that is supported by the integration framework.
Related reference:
“REST system properties” on page 256
System properties are available to configure how the REST API works for your
specific requirements.

Integrating data with external applications 227

Resource handlers and URIs
The REST API provides access to business objects and integration object structures.
A handler class for each resource is registered in a system property.

The handler classes for the business object and object structure resources are
registered in the mxe.rest.handler.mbo system property and the
mxe.rest.handler.os system property.

You can extend handlers for custom processing. You can create handlers for other
resource types, and for individual instances of business object resources or object
structure resources.

REST API resources are addressed by using resource identifiers that are part of the
Uniform Resource Identifier (URI). The URIs are used to address the entities that
are represented as REST resources.

For example, the following URI accesses a collection of Person business objects.
The mbo indicates the business object resource type and person is the resource:
.../maxrest/rest/mbo/person

For another example, the following URI accesses a collection of data for the Person
object structure. The os indicates the object structure resource type and mxperson is
the resource:
.../maxrest/rest/os/mxperson

GET method
Use the GET method to retrieve business object resources and object structure
resources.

Syntax
GET uri?parameter=value?parameter=value&...

uri is a URI. The length of the URI path cannot exceed any system specified limit.

parameter is a query parameter.

value is the value of the query parameter.

Example: Retrieving a business object resource

The following method retrieves a business object resource:
GET /maxrest/rest/mbo/asset/123

The following XML is returned:
<?xml version="1.0" encoding="UTF-8" ?>

<ASSET xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<ASSETNUM>11200</ASSETNUM>
<SERIALNUM>3481-52</SERIALNUM>
<ASSETTAG>3751</ASSETTAG>
<LOCATION>BR200</LOCATION>
<DESCRIPTION>HVAC System- 50 Ton Cool Cap/ 450000 Btu Heat Cap</DESCRIPTION>
<ASSETUID>123</ASSETUID>
.
.

</ASSET>

228 Integrating Data With External Applications

The resource response is shown in XML. The default format setting can be
configured in the mxe.rest.mbo.defaultformat system property.

Example: Retrieving an object structure resource

The following method retrieves an object structure resource:
GET /maxrest/rest/mbo/mxasset/123

The following XML is returned:
<?xml version="1.0" encoding="UTF-8" ?>

<QueryMXASSETResponse xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
creationDateTime="2011-04-07T11:43:59-04:00"
transLanguage="EN" baseLanguage="EN" messageID="1302195161355515345"
maximoVersion="7 5 20110405-0030 V7500-718" rsStart="0" rsTotal="1"
rsCount="1">
<MXASSETSet>

<ASSET>
<ASSETNUM>11200</ASSETNUM>
<SERIALNUM>3481-52</SERIALNUM>
<ASSETTAG>3751</ASSETTAG>
<LOCATION>BR200</LOCATION>
<DESCRIPTION>HVAC System- 50 Ton Cool Cap/ 450000 Btu Heat Cap</DESCRIPTION>
<ASSETUID>123</ASSETUID>
.
.
<ASSETMETER>

<ACTIVE>1</ACTIVE>
<ASSETMETERID>63</ASSETMETERID>
<LASTREADING>0</LASTREADING>
<METERNAME>PRESSURE</METERNAME>
.
.

</ASSETMETER>
<ASSETSPEC>

<ASSETATTRID>SPEED</ASSETATTRID>
<ASSETSPECID>2138</ASSETSPECID>
.
.

</ASSETSPEC>
<ASSETSPEC>

<ASSETATTRID>SHAFTDIA</ASSETATTRID>
<ASSETSPECID>2139</ASSETSPECID>
.
.

</ASSETSPEC>
</ASSET>

</MXASSETSet>
</QueryMXASSETResponse>

The object structure resource data includes asset, asset meter, and asset
specification data based on the configuration of the objects within the MXASSET
object structure. Any fields that are configured to be included or excluded are
implemented in the data.

The URI path can contain the ID of the resource as a way to select a specific
resource. In the preceding example, the ID is 123. The ID value is a unique ID for
the object that is registered in the MAXATTRIBUTE table. If no ID is provided, the
response includes all occurrences of the resource, depending on the security
restrictions on the user. The ID is the only business object field that can be part of
the URI path for selection criteria. All other fields can be used as a query
parameter in the URI for selection filtering.

Integrating data with external applications 229

Example: Selecting related child resources

The following method requests a PO resource for a business object resource:
GET /maxrest/rest/mbo/po/13

The following XML is returned:
<?xml version="1.0" encoding="UTF-8" ?>

<PO xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<PONUM>1005</PONUM>
<DESCRIPTION>Electrical Supplies</DESCRIPTION>
.
.

</PO>

Example: Selecting related PO lines of a PO

The following method requests all of the PO lines that are related to the PO that is
selected in the previous example:
GET /maxrest/rest/mbo/po/13/poline

The following XML is returned:
<?xml version="1.0" encoding="UTF-8" ?>

<POLINEMboSet rsStart="0" rsTotal="2" rsCount="2"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<POLINE xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<PONUM>1005</PONUM>
<ITEMNUM>11241</ITEMNUM>
<STORELOC>CENTRAL</STORELOC>
<ORDERQTY>3.0</ORDERQTY>
<POLINENUM>1</POLINENUM>
<POLINEID>10051</POLINEID>
.
.

</POLINE>
<POLINE xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<PONUM>1005</PONUM>
<ITEMNUM>29331</ITEMNUM>
<STORELOC>PKG</STORELOC>
<ORDERQTY>2.0</ORDERQTY>
<POLINENUM>2</POLINENUM>
<POLINEID>10052</POLINEID>
.
.

</POLINE>
</POLINEMboSet>

If you select POLINE, the relationship name that is specified in the URI (POLINE)
identifies the path from the business object (PO) to a related business object
(POLINE). In this example, the business object and the relationship have the same
name. An object can have many relationships between two objects that can result
in different data being selected for the related object. Relationships are defined in
the MAXRELATIONSHIP table.

To retrieve only the line of a specific POLINE business object, include the ID of the
POLINE business object in the URI:
GET /maxrest/rest/mbo/po13/poline/10052

230 Integrating Data With External Applications

In this example, poline represents the relationship name and 10052 is the ID of the
POLINE business object that the relationship retrieves. You can use the same
approach to specify the path from POLINE to ITEM or POCOST:
GET /maxrest/rest/mbo/po/13/poline/10052/item

GET /maxrest/rest/mbo/po/13/poline/10052/pocost

When you use the object structure resource, child objects cannot have relationships.
The object structure supports a graph of related business objects. The relationships
are part of the object structure definition.

You can traverse related business objects to move from one resource to another if a
valid relationship exists between the source and target object.
Related reference:
“HTTP header properties” on page 247
Several HTTP header properties are relevant to the REST API.

Query parameters and operators
To fetch a resource whose unique ID is known, you can supply the ID of the
resource as part of the URI path. You can also use query parameters to filter and
fetch resource collections.

In a resource collection, the representation has a pointer to the unique ID of each
resource. The ID is used by the consuming software to create the link to the
resource. The link is used to update, delete, and query the resource.

A RESTful interaction often begins by fetching a resource collection and then
drilling down to a particular resource in the collection.

You can use any field of a business object resource or a related business object
resource as a query parameter. The business object query by example (QBE)
framework restricts the relationship between the business objects to one level deep.
Any field of an object structure resource can be used as a query parameter if the
field belongs to an object that resides in the top two levels of the object structure.

If you use a business object attribute as a query parameter, the following operators
can be used as part of the parameter.

Operator Notation Example

Equals ~eq~ status=~eq~APPR Use the
equals operator to perform
an exact match. A
status=APPR query implies a
like operator comparison. If
you use status=APPR
&_exactmatch=1, the
processor is forced to do an
exact match. This notation
produces the same result as
status=~eq~APPR.

Not equals ~neq~ status=~neq~APPR

Greater than ~gt~ quantity=~gt~2.5

Greater than equals ~gteq~ quantity=~gteq~2.5

Less than ~lt~ quantity=~lt~2.5

Less than equals ~lteq~ quantity=~lteq~2.5

Integrating data with external applications 231

Operator Notation Example

Ends with ~ew~ description=~ew~APPR

Starts with ~sw~ description=~sw~APPR

Like No notation required description=APPR

Example: Querying by location

The following example queries for a location by using the location number as a
query parameter without an operator:
GET maxrest/rest/mbo/locations?location=PT100

The following XML is returned by the query:
<?xml version="1.0" encoding="UTF-8" ?>

<LOCATIONSMboSet rsStart="0" rsTotal="2" rsCount="2"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<LOCATIONS>

<LOCATION>PT100</LOCATION>
<DESCRIPTION>PT100</DESCRIPTION>
.
.

</LOCATIONS>
<LOCATIONS>

<LOCATION>PT1001</LOCATION>
<DESCRIPTION>1001</DESCRIPTION>
.
.

</LOCATIONS>
</LOCATIONSMboSet>

Because no operator is specified, a like comparison is used, and the result has two
locations. If the request uses the equals operator, only location PT100 is returned
for the query request, because the operator enforces an exact match:
GET /maxrest/rest/mbo/locations?location=~eq~PT100

Example: Using multiple parameters

The following example shows the use of multiple parameters to query for an Issue
YTD quantity that is greater than 1 and an order quantity that is greater than 5:
GET /maxrest/rest/mbo/inventory?issueytd=~gt~1&orderqty=~gt~5

Example: Using the ormode condition

You can request multiple values for a single field by using the ormode condition.
The following example selects records where the issue YTD quantity is equal to 7
or less than 4:
GET /maxrest/rest/mbo/inventory?issueytd.ormode=~eq~7&issueytd.ormode=~lt~4

Example: No records selected

If a query request results in no records being selected, an empty result set (not an
exception condition) is returned.

For example, the following request is for records that have an Issue YTD quantity
of 99:

232 Integrating Data With External Applications

GET /maxrest/rest/mbo/inventory?issueytd=~eq~99

No records are selected as a result of the request, and therefore the following
empty result is returned:
<?xml version="1.0" encoding="UTF-8" ?>

<INVENTORYMboSet rsStart="0" rsTotal="0" rsCount="0"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

_opmodeor parameter
Use the _opmodeor parameter to evaluate multiple fields by using an OR condition
between values instead of the default AND condition.

For example, the following request returns records where the issue YTD quantity is
greater than 1 and the order quantity is greater than 5:
GET /maxrest/rest/mbo/inventory?issueytd=~gt~1&orderqty=~gt~5

The query selects six records, as shown in the rsTotal attribute:
<?xml version="1.0" encoding="UTF-8" ?>

<INVENTORYMboSet rsStart="0" rsTotal="6" rsCount="6"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<INVENTORY xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ITEMSETID>SET1</ITEMSETID>
<MANUFACTURER>WES</MANUFACTURER>
<SHRINKAGEACC>

<VALUE>6600-810-800</VALUE>
</INVENTORY>
.
.

<INVENTORY xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

.

.

The following modified request sets the _opmodeor parameter to true to return
records where the issue YTD quantity is greater than 1, or the order quantity is
greater than 5:
GET /maxrest/rest/mbo/inventory?issueytd=~gt~1&orderqty=~gt~5&_opmodeor=1

The modified query selects 54 records:
<?xml version="1.0" encoding="UTF-8" ?>

<INVENTORYMboSet rsStart="0" rsTotal="54" rsCount="54"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<INVENTORY xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
.
.

_rsStart and _maxItems parameters
The _rsStart and _maxItems parameters are used together to control the number of
records returned for a request and to allow paging through a large volume of
records.

Example: Select all asset resources

The following request selects all the asset resources in the system:
GET maxrest/rest/mbo/asset?&_opmodeor=1

Integrating data with external applications 233

In this example, 757 assets are selected:
<?xml version="1.0" encoding="UTF-8" ?>

<ASSETMboSet rsStart="0" rsTotal="757" rsCount="757"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSETNUM>CAL100</ASSETNUM>

In the following request, the _maxItems parameter limits the number of rows
selected. The number of rows is limited to 20, as shown by the rsCount value:
GET /maxrest/rest/mbo/asset?_maxItems=20

<?xml version="1.0" encoding="UTF-8" ?>
<ASSETMboSet rsStart="0" rsTotal="757" rsCount="20"

xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

To retrieve the next 20 rows, the following request adds the _rsStart parameter:
GET /maxrest/rest/mbo/asset?_maxItems=20&_rsStart=20

<?xml version="1.0" encoding="UTF-8" ?>
<ASSETMboSet rsStart="20" rsTotal="757" rsCount="20"

xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

The next 20 rows are retrieved, starting at row 20 and ending at row 39.
Related concepts:
“In-session scrolling” on page 239
Holding a resource collection in memory can improve performance when scrolling
through pages of data.

_orderbyasc parameter
The _orderbyasc parameter controls the sort order of returned data.

The attributes that are used for the order by clause are shown in ascending order.
Provide a comma-separated list of field names for the resource object to sort the
result.

Use the _orderbydesc parameter in a similar way to sort in descending order.

Example: Sorting a response

The following request does not include the _orderbyasc parameter:
GET /maxrest/rest/mbo/asset?_maxItems=20&_rsStart=20

The following assets are returned:
<?xml version="1.0" encoding="UTF-8" ?>

<ASSETMboSet rsStart="20" rsTotal="757" rsCount="20"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSETNUM>7400</ASSETNUM>
<SERIALNUM>A5252525555</SERIALNUM>
<LOCATION>HWSTOCK</LOCATION>
.

234 Integrating Data With External Applications

.
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSETNUM>7300</ASSETNUM>
<SERIALNUM>A6687688888</SERIALNUM>
<LOCATION>HWSTOCK</LOCATION>
.
.

<ASSET xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSETNUM>7200</ASSETNUM>
<SERIALNUM>A6387683888</SERIALNUM>
<LOCATION>HARDWARE</LOCATION>
.
.

The following request includes the _orderbyasc parameter by specifying the
location field of the asset business object:
GET /maxrest/rest/mbo/asset?_maxItems=20&_rsStart=20&_orderbyasc=location

The modified request returns the following assets in the requested sort order:
<?xml version="1.0" encoding="UTF-8" ?>

<ASSETMboSet rsStart="20" rsTotal="757" rsCount="20"
xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSETNUM>2045</ASSETNUM>
<PARENT>19998</PARENT>
<LOCATION>5THFLSWSTOCK</LOCATION>
.
.

<ASSET xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSETNUM>2002</ASSETNUM>
<SERIALNUM>K6LQI</SERIALNUM>
<LOCATION>6THFLOOR</LOCATION>
.
.

<ASSET xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSETNUM>2074</ASSETNUM>
<PARENT>2002</PARENT>
<LOCATION>6THFLOOR</LOCATION>
.
.

_includecols and _excludecols parameters
Use the _includecols and _excludecols parameters to control the content of
attributes that are returned in response to a query.

If neither parameter is specified, all of the attributes are returned for a business
object resource. The _includecols and _excludecols parameters are only valid for
a business object resource.

Example: Retrieving specific fields

If you use the _includecols parameter, only the attributes that are listed for the
parameter are returned:
GET /maxrest/rest/mbo/asset?_includecols=assetnum,serialnum

The request returns only the asset number and serial number:

Integrating data with external applications 235

<?xml version="1.0" encoding="UTF-8" ?>
<ASSETMboSet rsStart="0" rsTotal="757" rsCount="757"

xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SERIALNUM>32R5G</SERIALNUM>
<ASSETNUM>13150</ASSETNUM>

</ASSET>
<ASSET xmlns="http://www.ibm.com/maximo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SERIALNUM>2342VV</SERIALNUM>
<ASSETNUM>13160</ASSETNUM>

</ASSET>

Example: Excluding a field

The _excludecols parameter identifies a list of business object fields to exclude
from the query response:
GET /maxrest/rest/mbo/asset?_excludecols=serialnum

In this example, the request returns all of the fields of the asset resource except the
serial number.

_dropnulls parameter
Set the _dropnulls parameter to false to include fields that have a null value in the
query response.

All resource fields are returned by a query unless they are restricted by other
parameters or by the object structure configuration. If the _dropnulls parameter is
not provided, null fields are dropped from the query response.

Example: Including fields that have null values

The following query includes the parameter:
GET /maxrest/rest/os/mxasset?_dropnulls=0&_maxItems=1

The query returns null values as shown in the following XML:
<?xml version="1.0" encoding="UTF-8" ?>

<QueryMXASSETResponse xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
creationDateTime="2011-04-08T09:25:11-04:00" transLanguage="EN"
baseLanguage="EN" messageID="1302273234298496774"
maximoVersion="7 5 20110405-0030 V7500-718" rsStart="0"
rsTotal="757" rsCount="1">
<MXASSETSet>
<ASSET>

<ANCESTOR />
<ASSETID>1579</ASSETID>
<ASSETNUM>CAL100</ASSETNUM>
<ASSETTAG />
<ASSETTYPE />
<AUTOWOGEN>0</AUTOWOGEN>
<BINNUM />
<BUDGETCOST>0.0</BUDGETCOST>
<CALNUM />
<CHANGEBY>WILSON</CHANGEBY>
.
.

236 Integrating Data With External Applications

_format and _compact parameters
The REST API supports XML and JSON representations (formats). You can use the
_format parameter or content negotiation to specify a resource representation. You
can use the _compact parameter to specify compact JSON format.

If a request does not specify a format, the default representation is used. The
default is defined by the mxe.rest.mbo.defaultformat system property.

If a request specifies the _format parameter, the value is validated against the list
of supported formats in the mxe.rest.supportedformats system property. If the
requested format matches one of the supported formats, the requested format is
used as the response format. If the requested format does not match the supported
format list, an HTTP 406 error code is generated.

The _compact Boolean query parameter applies to the JSON format when the
formatted response can be returned in a compact style. The structure of the
response data is simplified and no metadata is returned for individual field values.

Example: Specifying JSON representation

The following request is for an Asset object in JSON representation:
GET /maxrest/rest/mbo/asset/123?_format=json

The following response is returned:
{

ASSET: {

Attributes: {

ASSETNUM: {
content: "11200"
}

SERIALNUM: {
content: "3481-52"
}

ASSETTAG: {
content: "3751"
}

LOCATION: {
content: "BR200"
}

DESCRIPTION: {
content: "HVAC System- 50 Ton Cool Cap/ 450000 Btu Heat Cap"
}

Example: Specifying compact format

The following request specifies compact format:
GET /maxrest/rest/mbo/asset/123?_format=json&_compact=1

This following response is returned:
{

ASSET: {
ASSETNUM: "11200"

Integrating data with external applications 237

SERIALNUM: "3481-52"
ASSETTAG: "3751"
LOCATION: "BR200"
DESCRIPTION: "HVAC System- 50 Ton Cool Cap/ 450000 Btu Heat Cap"
VENDOR: "TRN"
MANUFACTURER: "TRN"
.
.

Related concepts:
“Content negotiation of representations”
The REST API supports identification of the representation format by using content
negotiation as an alternative to using the _format query parameter.

Content negotiation of representations
The REST API supports identification of the representation format by using content
negotiation as an alternative to using the _format query parameter.

For XML and JSON formats, the supported mimetype values are defined in the
following system properties:

Property Value

mxe.rest.format.json.mimetypes application/json

mxe.rest.format.xml.mimetypes application/xml,text/xml

The format is an alias for one or many mime types and is used to identify the
serializer for a requested mime type. The REST API uses the Accept HTTP header
value for content negotiation. The REST API matches the header value to one of
the specified mime types that are defined in the system property. If there is a
match, the REST API uses the value as the corresponding format for the response
format. If there is no match with the supported format list, an HTTP 406 error code
is generated.

The XML and JSON serializers always reply with the values application/xml for
the XML representation and application/json for the JSON representation in the
Content-Type header property. If you create a serializer to support another format,
add your format to the list in the mxe.rest.supportedformats system property.

The values in the mxe.rest.supportedformats system property are related to the
values that are provided in individual properties for the corresponding supported
mime type values, such as mxe.rest.format.NEW.mimetypes. The mime type values
are provided in the request through the Accept header property.

For example, the following system properties are used to add HTML as a resource
representation format:

Property Value

mxe.rest.supportedformats html,xml,json,image

mxe.rest.format.html.mimetypes text/html

mxe.rest.mbo.serializer com.ibm.tivoli.maximo.rest.MboHTMLSerializer

mxe.rest.os.serializer com.ibm.tivoli.maximo.rest.OSHTMLSerializer

When the _format parameter and the Accept header property are both provided
for a query, the query parameter takes precedence.

238 Integrating Data With External Applications

Related concepts:
“_format and _compact parameters” on page 237
The REST API supports XML and JSON representations (formats). You can use the
_format parameter or content negotiation to specify a resource representation. You
can use the _compact parameter to specify compact JSON format.

In-session scrolling
Holding a resource collection in memory can improve performance when scrolling
through pages of data.

If you specify the _usc parameter with a value of 1 in a query, the server holds the
resource collection in memory. The browser can request additional pages of data
from memory instead of reselecting the data from the business object. The HTTP
response includes the ID of the resource collection in the RLID header property.

Subsequent requests for additional pages of data can specify the _maxitem
parameter, _rsStart parameter, and _rlid parameter, which holds the ID of the
resource collection. The server retrieves the next page from the data that is held in
memory for the specified ID.

The server cache data is held until the browser session ends or until the browser
releases the data. For example, the data is released if the ID of the resource is
specified by the _rlid parameter and the _rlrq parameter is set to true.

As an alternative to using the _maxitems and _rsStart parameters for in-session
scrolling, you can create a mxe.rest.handler.resource.pagesize system property and
assign to it a number of resources for each page of data. You can then use the
_page query parameter in the request to select a specific page of data, such as page
3.

For example, if you create the mxe.rest.mbo.asset.pagesize system property and
assign it the value 35, 35 assets are returned for each page of data.
Related concepts:
“_rsStart and _maxItems parameters” on page 233
The _rsStart and _maxItems parameters are used together to control the number of
records returned for a request and to allow paging through a large volume of
records.
Related reference:
“HTTP header properties” on page 247
Several HTTP header properties are relevant to the REST API.
“REST query parameters” on page 252
By using query parameters, you can tailor and filter the responses.

Caching of GET requests
By enabling the caching of GET requests, you can improve the response times of
requests for resource data that were previously submitted by the same user.

When caching is enabled, the data is retrieved from the browser cache instead of
from the business object on the server. Caching is used for a request if the entity
tag (ETag) value of the request matches the value of the previous request. Caching
is unique to each user and is controlled by the Cache-Control HTTP header
property.

Integrating data with external applications 239

Enabling caching

You enable caching for individual resources by creating system properties. The
system properties must be in the form mxe.rest.handler.resource.cache, where
handler is mbo or os and resource is the name of the business object or object
structure. The system properties must have a Boolean value of 1.

For example, the system property mxe.rest.mbo.workorder.cache set to a value of
1 enables caching for the work order business object.

Entity tag calculations and comparisons

When an initial request is made for a resource and caching is enabled for the
resource, the framework generates an ETag value for the resource response. The
ETag is calculated based on the MBO rowstamp attribute, which changes any time
an MBO is modified. For a resource collection, the ETag is calculated based on a
hash of the collection of rowstamp values from the MBOs in the collection.

For example, the response contains the following in the HTTP header:
HTTP/1.1 200 OK
ETag: "123456789"
Cache-control: private
Content-Length: 12195

The Cache-control is marked as private to ensure that only the current user can
reuse the contents of the cache.

When the user makes a repeat request for the same resource or collection, the
request is similar to the following:
GET maxrest/rest/mbo/po HTTP/1.1
Host: x.y
If-None-Match: "123456789"

The If-None-Match value is the ETag value from the previous request. The
framework reads the If-None-Match header value and compares it to the new
calculated ETag value for the resource or collection for the second request. If the
values match, the server responds with an HTTP 304, implying that the client
cache content is valid and can be used. The response includes the following line:
HTTP/1.1 304 Not Modified

If the ETag value does not match the If-None-Match header value of the request,
the resource representation is constructed and sent to the client with a new ETag
value to be used by the client for subsequent requests for the resource or
collection:
HTTP/1.1 200 OK
ETag: "98999999"
Cache-control: private
Content-Length: 50004

Pessimistic caching mode

The default caching mode is pessimistic caching. In pessimistic caching mode,
requests are serialized but the data is not sent from the server to the client when
the ETag value of the request matches the value of the previous request.

240 Integrating Data With External Applications

Optimistic caching mode

You can enable optimistic caching by setting the
mxe.rest.handler.resource.optimistic system property to 1. In optimistic caching
mode, the ETag value is calculated before any data serialization occurs. Although
optimistic caching can improve response times significantly because no
serialization occurs, it requires more memory, especially for queries that request
many records.

By default, optimistic caching determines the ETag value from the root object of an
object structure. Therefore, if an object structure has related objects that do not
update the root object, the ETag value might not be accurate. You can ensure that
the ETag value is determined from all the objects in the object structure, including
related objects, by setting the mxe.rest.handler.resource.deepetag system property
to 1. However, by using this system property, the performance improvement is not
as great and more memory is used.

Cache time limits

You can configure the length of time that the cache is valid for by setting the
mxe.rest.handler.resource.maxage system property to a value measured in seconds.
Related reference:
“HTTP header properties” on page 247
Several HTTP header properties are relevant to the REST API.
“REST system properties” on page 256
System properties are available to configure how the REST API works for your
specific requirements.

PUT, POST, and DELETE methods
You can modify resources by using the HTTP PUT, POST, and DELETE methods.

The PUT, POST, and DELETE methods can be used to modify business object
resources and object structure resources. However, the business rules of an object
might prevent it from being updated by a REST API request. For example, a
DELETE request on a work order resource might fail if the business object
validations prevent deletions because of the current state of the work order.

Syntax
method uri HTTP/1.1
parameter=value¶meter=value&...

method is PUT, POST, or DELETE

uri is a URI and any associated query parameters

parameter is a parameter of the resource that is updated

value is the value of the parameter

PUT method
Use the PUT method to update or insert a resource. An update request must
provide the unique ID of the resource. To update an object structure resource, the
ID of the main object is required.

Integrating data with external applications 241

To update or insert an object structure resource, you can specify the _action
parameter to identify actions that the integration framework provides, such as the
Change or AddChange actions.

Example: Updating an asset

The following method updates the asset that has an ID of 1234. The asset
description is changed to my_new_description and the type is changed to
OPERATING:
PUT maxrest/rest/mbo/asset/1234 HTTP/1.1
description=my_new_description&type=OPERATING

Example: Updating a child object

The following method updates the assetspec business object, which is a child of
asset. The value is changed to new_value and the description is changed to
my_new_description:
PUT maxrest/rest/mbo/assetspec/5678 HTTP/1.1
value=my_new_value&description=my_new_description

Example: Establishing the context of a parent object

To insert or update a child business object, you might need to establish the context
of the parent business object context, such as in the following example in which a
PO line description is updated and the ID of the PO is provided for context:
PUT maxrest/rest/mbo/po/1234/poline/5678 HTTP/1.1
description=my_new_description

POST method
Use the POST method to update or insert a resource.

To update a resource, you must specify the ID of the resource. To create a resource,
you must specify the primary key and all the required fields that do not have a
default value, but no ID is required.

To update or insert an object structure resource, you can specify the _action
parameter to identify actions that the integration framework provides, such as
Change or AddChange.

To update or insert a child object of an object structure resource, the form data
must identify each occurrence of the child object.

When you use the POST method to create a resource, specify the _ulcr query
parameter with a value of 1 so that the response includes a link for the client to
access the new resource. Otherwise, the content of the resource is included in the
response. The link is included in the Location header property and the HTTP
response code is 201 to identify that a link is provided instead of the data.

Example: Inserting an asset

The following method inserts asset 127 within the BEDFORD site by using a
business object resource. The asset and site make up the primary key.
POST maxrest/rest/mbo/asset HTTP/1.1
assetnum=127&siteid=BEDFORD&description=my_new_description&type=OPERATING

242 Integrating Data With External Applications

Example: Updating an asset by specifying its ID

The following method updates an asset by providing the ID as part of the URI:
POST maxrest/rest/mbo/asset/1234 HTTP/1.1
description=my_new_description&type=OPERATING

Example: Specifying an action

The following method uses the _action parameter to specify a Change action:
POST maxrest/rest/mbo/asset/968 HTTP/1.1
_action=Change&description=my_new_description

Example: Updating a record that has multiple child objects

The following method adds two purchase order lines to a purchase order, and each
line has two purchase order costs:

POST maxrest/rest/os/mxpo/1234 HTTP/1.1
description=new_po_desc&
poline.id1.polinenum=1&poline.id1.item=ABC&poline.id1.description=new_description&
poline.id1.pocost.id1-1.costlinenum=1&poline.id1.pocost.id1-1.gldebitacct=new_gl_acct_a&
poline.id1.pocost.id1-2.costlinenum=2&poline.id1.pocost.id1-2.gldebitacct=new_gl_acct_b&
poline.id2.polinenum=2&poline.id2.item=XYZ&poline.id2.description=new_description&
poline.id2.pocost.id2-1.costlinenum=1&poline.id2.pocost.id2-1.gldebitacct=new_gl_acct_c&
poline.id2.pocost.id2-2.costlinenum=2&poline.id2.pocost.id2-2.gldebitacct=new_gl_acct_d&

In the example, the identifiers identify the following parameters:

Group identifier Parameters identified

id1 Parameters that belong to poline 1

id1-1 Parameters that belong to pocost 1 for poline 1

id1-2 Parameters that belong to pocost 2 for poline 1

id2 Parameters that belong to poline 2

id2-1 Parameters that belong to pocost 1 for poline 2

id2-2 Parameters that belong to pocost 2 for poline 2

Related reference:
“HTTP header properties” on page 247
Several HTTP header properties are relevant to the REST API.

DELETE method
The DELETE method requires the unique ID of the resource.

To delete an object structure resource, the ID of the main object is required.

Example: Deleting an asset

The following method deletes asset 1234:
DELETE maxrest/rest/mbo/asset/1234 HTTP/1.1

Concurrent updates of resources
Processing can be controlled so that a resource is updated or deleted only if the
resource has not been changed by another user or application after the initial
query.

Integrating data with external applications 243

If the _urs parameter is set to a value of 1, the query response includes the
rowstamp value for the resource.

XML example:
<PO rowstamp=1234567890>

JSON example:
{"ASSET":{"rowstamp":"1234567890","Attributes":{"ASSETNUM":{"content":"1001"}

JSON example in compact format:
{"ASSET":{"rowstamp":"1234567890","ASSETNUM":"1001",

For an object structure resource, a rowstamp value is provided for each object that
is in the object structure.

On a subsequent request to update the resource, the rowstamp value can be
provided by using the _rowstamp parameter for business object and object structure
resources, or by specifying the If-Match header property for business objects.

During processing, the rowstamp value is compared to the initial rowstamp. If the
values do not match, the update or delete operation fails and an HTTP return code
of 412 is in the response.

Service method queries and updates
The REST API can be used to call methods that are exposed by application
services.

Methods that are exposed by application services are typically marked with the
Java Specification Request (JSR) 181 @WebMethod annotation, which exposes them
as web service methods. The REST API provides a resource-oriented view into
these service methods.

The service methods are in the following categories:
v Methods that create, update, or delete resources by using the HTTP POST

method and modify the system state by doing so.
v Methods that fetch resources or collections of resources by using the HTTP GET

method and do not modify the system state.
v Methods that return system information, such as date or version information, by

using the HTTP GET method and do not access resources.

Service methods that use HTTP POST to update resources
Methods can create, update, or delete resources by using the HTTP POST method.

Methods that update resources modify the system state.

The X-HTTP-Method-Override (XMO) header qualifies the HTTP POST. The XMO
header contains the name of the method that is exposed by the JSR 181 annotation.

The REST framework looks up the service that owns the resource, finds the
method that is identified in the XMO header, deserializes the POST form
parameters, calls the method, and returns the serialized representation of the
modified resource.

244 Integrating Data With External Applications

Example: Annotating a method

For example, the ASSET service has the annotated moveSingleAsset business
method:
@WebMethod
public void moveSingleAsset(@WSMboKey("ASSET") MboRemote asset, String newLocation,

String newSite, String newParent) throws MXException, RemoteException

The method moves an asset from its current location to a new location and
therefore modifies the state of the system. The following request is used to call the
method:
POST maxrest/rest/mbo/asset/1234 HTTP/1.1
x-http-method-override: "moveSingleAsset"

The form data request is the following:
~asset=this&~newLocation=Some_where&~newSite=some_site&~newParent=Some_one

When the request is made, the following occurs:
1. The asset business object that has the identifier 1234 is loaded.
2. The owning service (ASSET) is looked up.
3. The method that is named moveSingleAsset is found.
4. The asset that is in the URI is referenced to the ASSET business object by the

@WSMboKey annotation, and the business object is provided as the first
parameter value in the form data request.

5. The remaining values are deserialized and assigned, based on their names.
6. The modified asset 1234 is returned to the client in the requested

representation.

Example: Overriding a method parameter name

The form parameter names are the same as the method parameter names, prefixed
with the ~ (tilde) character, unless they are annotated with the
@WebParam(name="...") annotation.

For example, consider a case where the method definition has an operation name
defined in the annotation:
@WebMethod(operationName="moveAssetLocation")
public void moveSingleAsset(...)

In this case, the following request is used to call the method:
POST maxrest/rest/mbo/asset/1234 HTTP/1.1
x-method-override: "moveAssetLocation"

The form data request is the following:
~asset=this&~newLocation=Some_where&~newSite=some_site&~newParent=Some_one

The XMO header value must use the attribute value specified in the @WebMethod
annotation: moveAssetLocation.

Service methods that use HTTP GET to query resources
A method name or annotated operation name that starts with the keyword get can
be accessed by the HTTP GET method.

Integrating data with external applications 245

For example, the following method from the LOGGING service returns the list of
MAXLOGGER business objects as a business object set:
@WebMethod
@WSMboSet(name="MAXLOGGER")
public MboSetRemote getLoggerList()

The following request is used to call the method and returns the collection of
business objects in the configured representation:
GET maxrest/rest/mbo/maxlogger?_qop=getLoggerList HTTP/1.1

In the following variation of the method, an operation name is provided:
@WebMethod(operationName=”getFilteredLoggers”)
@WSMboSet(name="MAXLOGGER")
public MboSetRemote getLoggerList(String someFilter)

The following request is used to call the method:
GET maxrest/rest/mbo/maxlogger?_qop=getFilteredLoggers&~someFilter=... HTTP/1.1

The _qop value specifies the annotated name. The someFilter parameter is prefixed
with the ~ character as part of the request.

Virtual methods

If a method name does not start with the keyword get, it cannot be called directly.
For example, if a client tries to call the moveSingleAsset operation by using HTTP
GET, an HTTP 405 error is thrown. However, you can define a virtual method by
using a system property.

For example, suppose you create the property
mxe.rest.mbo.maxqueue.action.getQueueData and assign it the value
_operation=viewQueue|~queueName=this.queuename.

For the maxqueue resource, the virtual method getQueueData maps to the
viewQueue operation in the owning service of maxqueue, which is the MIC
service. The | (pipe) character separates the attributes. You can therefore access the
viewQueue operation by using the following HTTP GET call:
GET /maxrest/rest/mbo/maxqueue/4567?_qop=getQueueData&~selector=...&~count=-1

You can specify literal or derived values for a method parameter.

For example, the viewQueue method has a parameter queueName that maps to the
maxqueue.queuename attribute. The maxqueue is the business object in the current
context that is specified by the GET URI. Therefore, the framework evaluates the
derived value this.queuename as current_mbo_in_context.queuename, which is the
value of the queuename attribute of maxqueue that is identified by the unique ID
4567.

As a second example, suppose you create the mxe.rest.mbo.po.action.approve
system property and assign it the value _operation=changeStatus|~status=APPR.

A virtual operation called approve is created and it maps to the operation called
changeStatus on PO, which is the owner service of the PO business object. For
simplicity in the example, the value for the status parameter is hardcoded to
APPR. The hardcoded value would not be practical because the status parameter
value must be translatable.

246 Integrating Data With External Applications

If you use virtual methods, you must ensure that HTTP GET methods do not map
to operations that modify the system state or have any other side effects.

Predefined initiateWorkflow operation

The predefined operation initiateWorkflow initiates a workflow for a business
object resource. The following two examples use this operation:
POST /maxrest/rest/mbo/po/6789 HTTP/1.1
x-http-method-override: "initiateWorkflow"

wfname=SOMEWF

POST /maxrest/rest/mbo/po/6789?wfname=SOMEWF HTTP/1.1
x-http-method-override: "initiateWorkflow"

The method initiates the active revision of a workflow named SOMEWF for the
purchase order business object that has the unique ID 6789. If the workflow has a
wait node or a task node, it might require other steps or a background event to
restart it, which is outside the scope of the REST API.

Service methods that use HTTP GET to query system data
Some service operations retrieve system data and are not resource-oriented.

For example, the following HTTP GET retrieves the date and time:
GET /maxrest/rest/ss/system/getDate

The following XML is returned:
<getDateResponse xmlns=....>
<result>some ISO 8601 date</result>
</getDateResponse>

For another example, the following HTTP GET returns version information:
GET /maxrest/rest/ssm/system/getMXServerVersion

The following XML is returned:
<getMXServerVersionResponse xmlns=...>
<return>Tivoli’s process automation engine 7.5.0.0 Build 20110127-1121
DB Build V7500-673</return>
<return>...</return>
</getMXServerVersionResponse>

To obtain a list of all services you can use the following GET method:
GET /maxrest/rest/ss

You can then drill down to each of the services in the list to get a list of operations
that can be called. For example, the following method returns the operations for
the service that is called system:
GET /maxrest/rest/ss/system

HTTP header properties
Several HTTP header properties are relevant to the REST API.

Table 35. REST API HTTP header properties

Property Description

Accept Provided by the requester and used for content negotiation to
determine the response format of the request.

Integrating data with external applications 247

Table 35. REST API HTTP header properties (continued)

Property Description

Accept-Language Provides the data in a language that is requested. This property
applies only to application fields that support multiple languages.
The values that are provided (such as EN or FR) must be supported
by the application.

The query parameter _lang can supply the language code and
provide the same capability as the Accept-Language header
property.

The query parameter _locale enables the numbers and dates that
are returned in the locale of the requester.

Cache-Control Notifies the requester whether caching is enabled.

If caching is enabled, the Cache-Control property has a value of
private to ensure that only the current user can reuse the content in
the cache.

When caching is not enabled, the Cache-Control property has a
value of no-cache.

The client request can contain the header Cache-Control: no-cache
to disable caching for a particular request even though caching is
enabled for the resource.

Content-Length Contains the length of the response.

Content-Type Notifies the requester of the format of the representation that is
being sent. For example, the value application/xml (for XML
response format) or application/json (for JSON response format)
can be specified.

ETag If caching is enabled, contains the Etag value for the resource that is
requested. The value is held by the browser cache of the requester
for subsequent requests for the same resource.

If-None-Match If caching is enabled, contains the Etag value for the resource that
was previously requested so that the API can determine if the cache
contents can be reused.

Last-Modified Notifies the requester of the date and time that the resource was
last modified.

Location Contains the link to a resource (HTTP code 201) that is created by
an HTTP POST.

_rlid Contains the ID of the resource collection and is used for in-session
scrolling.

Related concepts:
“Caching of GET requests” on page 239
By enabling the caching of GET requests, you can improve the response times of
requests for resource data that were previously submitted by the same user.
“In-session scrolling” on page 239
Holding a resource collection in memory can improve performance when scrolling
through pages of data.
Related reference:
“GET method” on page 228
Use the GET method to retrieve business object resources and object structure
resources.

248 Integrating Data With External Applications

“REST query parameters” on page 252
By using query parameters, you can tailor and filter the responses.
“POST method” on page 242
Use the POST method to update or insert a resource.
“REST system properties” on page 256
System properties are available to configure how the REST API works for your
specific requirements.

Response codes
Messages from REST resources are propagated from the resource instance to the
response.

The following HTTP response codes are implemented by the REST API.

Table 36. HTTP response codes

HTTP code Cause

200 Success.

201 Success. The response contains a link.

304 Success. The data is retrieved from the cache.

400 The request cannot be received because of an invalid URI, for example.

401 An authorization violation occurred because of the configuration.

403 An authorization violation occurred because the resource is blocked by a
mxe.rest.resourcetype.blockaccess system property.

404 The resource cannot be found or an invalid resource type was provided.

405 The HTTP method cannot be used for the resource. For example, you
cannot use the DELETE method on a business object set.

406 The requested representation is not supported.

412 The resource is being updated by another user.

500 All other errors.

The messages support the languages that are supported by Tivoli's process
automation engine.

Security in the REST API
Tivoli's process automation engine provides the authentication layer and
authorization support for the REST API.

No specific authentication-related processing occurs within the REST API
framework.

The authentication layer can provide either J2EE authentication or native
authentication for the REST API, and the application server provides HTTPS
support.

J2EE authentication

To use HTTP basic authentication, modify the web.xml file for the maxrest web
module by uncommenting the following lines:

Integrating data with external applications 249

<!--
<security-constraint>

<web-resource-collection>
<web-resource-name>REST Servlet for Web App</web-resource-name>
<description>Object Structure Service Servlet (HTTP POST)

accessible by authorized users</description>
<url-pattern>/rest/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<description>Roles that have access to Object Structure
Service Servlet (HTTP POST)</description>

<role-name>maximouser</role-name>
</auth-constraint>
<user-data-constraint>

<description>data transmission guarantee</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>REST Web Application Realm</realm-name>

</login-config>
-->

The preceding <security-constraint> section refers to a single role, maximouser,
which is defined in the <security-role> section of the file. By default, the
<security-role> section is not commented out:
<security-role>
<description>MAXIMO Application Users</description>
<role-name>maximouser</role-name>
</security-role>

In addition, change the value for useAppServerSecurity from 0 to 1:
<description>Indicates whether to use Application Server

security or not</description>
<env-entry-name>useAppServerSecurity</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>0</env-entry-value>
</env-entry>

Native authentication

If native authentication is used, a request can provide the credentials by specifying
a MAXAUTH header property that contains a Base64-encoded user and password.

If explicit login or logout requests are necessary, use the following requests:
GET /maxrest/rest/login

GET /maxrest/rest/logout

Cross-module communication

You can communicate with the REST API from the maximo and maxrest web
modules.

In cross-module communication, you typically do not want the user to re-enter
their credentials. If you use application server authentication, this issue does not
arise because the browser propagates the authentication token to the web modules

250 Integrating Data With External Applications

for each request. For native authentication, the REST API is available as a library
(commonweb) that any web module can access.

For example, the following URI queries an asset by using the maxrest web module:
http://site.example.com:9999/maxrest/rest/mbo/asset/46.

In contrast, the following URI queries an asset by using the user interface web
module: http://site.example.com:9999/maximo/rest/mbo/asset/46.

Authorization

For object structures, you can connect a resource to an authorizing application on
the Object Structure tab of the Object Structures application. If you specify an
authorizing application, all integration processing that uses the object structure is
affected.

For business objects, you can connect a resource to an authorizing application in
the Application Authorization for Objects window of the Object Structures
application. The application authorizes all REST API requests for the specific MBO
resource.

You can restrict resource access by specifying a list of resource names in the
mxe.rest.mbo.blockaccess and mxe.rest.os.blockaccess system properties.
Related reference:
“REST system properties” on page 256
System properties are available to configure how the REST API works for your
specific requirements.

Customization of the REST API
The REST API can be customized to support different resource representations,
such as the XHTML or Atom formats. It can also be customized by adding
attributes to the representation of a business object resource or by changing the
structure of a representation.

To support a new resource representation, you must provide custom serializers
that support the new formats.

If you add attributes, such as an attribute to the work order MBO resource in
JSON representation, you must add a custom JSON serializer for the resource. To
support additional query parameters, you must extend the MBO or OS handler.

Ensure that your customizations do not affect existing business processes or users.
By creating a separate instance of the REST API for the resource types, you can
avoid adverse affects.

For any customization, the class files must be included in the application EAR file
as part of the commonweb library.

Example

The following steps customize the REST API:
1. Create a system property by copying the mxe.rest.handler.mbo property,

giving the property the name mxe.rest.handler.abcmbo, and assigning it the
value com.ibm.tivoli.maximo.rest.ABCMboResourceRequestHandler.

Integrating data with external applications 251

If the customization is generic to all MBOs, the custom class extends the base
MBO handler. The URI context is abcmbo, and therefore URLs are in the
following form: /maxrest/rest/abcmbo/workorder?...
This step creates an instance of the REST API for the MBO resource.

2. To handle query parameters that are specific to the work order MBO, provide a
custom handler by creating the mxe.rest.handler.abcmbo.workorder system
property and assigning it the value
com.ibm.tivoli.maximo.rest.WOMboResourceRequestHandler.
The class could extend the default MBO handler by using
ABCMboResourceRequestHandler for MboResourceRequestHandler, for
example.

3. To customize the JSON serializer for the work order MBO, register the serializer
by creating the mxe.rest.serializer.abcmbo.workorder.json system property
and assigning it the value com.ibm.tivoli.maximo.rest.WOMboJSONSerializer.

4. To support a new format, such as Atom, add the value atom to the
mxe.rest.supported.formats system property. The name atom uniquely
identifies the serializer for the format. You can specify any name as long as a
serializer that has the name does not exist.

5. Add a serializer class by creating the mxe.rest.serializer.abcmbo.atom system
property and assigning it the value
com.ibm.tivoli.maximo.rest.MboATOMSerializer.

6. To identify the new format by using the HTTP Accept header, provide the
mime type mapping by creating the mxe.rest.format.atom.mimetypes system
property and assigning it the value application/atom+xml.

7. Set the default format by assigning the value atom to the
mxe.rest.abcmbo.defaultformat system property.

By following these steps, the customization does not affect other MBO or OS
resource handlers because it is within the context of the abcmbo handler.

REST query parameters
By using query parameters, you can tailor and filter the responses.

You can specify one or more of the following query parameters to control the data
that is selected. Boolean values must be set to 1 for true or 0 for false.

Table 37. REST query parameters

Name Type or value Description Default

_compact Boolean If true, JSON data is represented in a compact
representation.

False

_dropnulls Boolean If true, attributes are serialized only if the
business object or object structure resource has a
value. If false, all attributes are serialized, even if
they are null.

True

_exactmatch Boolean If true, parameter values are evaluated for an
exact match. If false, a LIKE evaluation occurs.

False

_excludecols Comma-separated list of
MBO attributes

Excludes the listed attributes from the resource
response. Valid only for the business object
resource type.

_fd Specifies an application table domain to apply as
a filter when the query is run. Can be used with
the _fdorg and _fdsite parameters.

252 Integrating Data With External Applications

Table 37. REST query parameters (continued)

Name Type or value Description Default

_fdorg Specifies an organization ID to apply as a filter
when the query is run. Must be used with the _fd
parameter.

_fdsite Specifies a site ID to apply as a filter when the
query is run. Must be used with the _fd
parameter.

_format json or xml Specifies the representation of the resource
response.

xml

_generic Boolean If true, the resource response field data is
returned in a generic format. Applies to JSON
data only.

False

_glc Boolean If true, the general ledger (GL) component data is
included for all Chart of Accounts application
fields of the business object.

For most Chart of Accounts fields, the individual
component data is included. This parameter by
default omits the component data and therefore
might improve performance.

False

_includecols Comma-separated list of
MBO attributes

Specifies the attributes that are included as part of
the resource response. Valid only for the business
object resource type.

_keys Boolean If true, only the key attributes of the business
object are serialized. All other attributes are
dropped from the resource response.

False

_lang Specifies the language code of the requester.

If this parameter is not specified, the
accept-language parameter of the HTTP header is
used to determine the language preference of the
requester. If the HTTP header does not specify the
parameter, the value from the default integration
user is used.

_lid and _lpwd Specifies a login user ID and password. For
development and testing use only. Valid only
when native authentication is configured.

_locale Boolean If true, the locale-specific text version of the
business object attribute value is returned in
addition to the strong typed value.

False

_maxItems Numeric Specifies the maximum number of business
objects that are serialized in the resource
collection. Use this parameter with the _rsStart
parameter to page the response for large resource
collections. The parameter name is case-sensitive.

_md Boolean If true, metadata information, such as hidden,
read-only, and required values, are returned.

False

_opmodeor Boolean If true, the OR operator is applied between
multiple attribute parameters. If false, the AND
operator is applied.

False

Integrating data with external applications 253

Table 37. REST query parameters (continued)

Name Type or value Description Default

_orderby Specifies how the fields of a resource are ordered.
The value can be asc (ascending) or desc
(descending). For an object structure resource, this
parameter can be used only for the fields of
business objects that are at the first or second
level of the object structure.

_orderbyasc Comma-separated list of
MBO attributes

Specifies the attributes that are used for the order
by clause in ascending order.

_orderbydesc Comma-separated list of
MBO attributes

Specifies the attributes that are used for the order
by clause in descending order.

_page Specifies the page number that the request must
return. This parameter can be used only if a
pagesize system property is created for the
resource that is being queried.

_qop Specifies a query method for the GET operation.
Valid for MBO resources only.

_rcol.alias Specifies a relationship name field that is returned
as part of the query response. The alias is the alias
name for the related attribute.

By specifying this parameter, you can query fields
that are related to the MBO resource that is
queried. For example, in the parameter
_rcol.polinecost=poline.linecost, polinecost is
the alias name and poline.linecost is the related
attribute.

_retainmbos Boolean For internal use only.

_rlid Boolean Specifies the ID of a resource collection. This
parameter is used only for in-session scrolling.

_rlrq Boolean If true, the cache is released for the resource
collection that is specified by the _rlid parameter.

False

_rootonly Boolean If true, only the main object of the object structure
is serialized. Valid only for the object structure
resource type.

False

_rowstamp For update requests, the rowstamp business object
can be provided to ensure that the object that is
being updated has not changed since it was first
queried.

_rsStart Numeric Specifies the start index of the MBO in the
resource collection that is serialized by the
resource response. The parameter name is
case-sensitive.

0

_tc Boolean If true, the total number of records is calculated
and that number is assigned to the rsTotal
attribute. The calculation adds to the processing
time, depending on the size of the resource
collection.

False

_tz Specifies the time zone of the request. Use this
parameter to correctly run date-related queries
when the time zone of the request is different
from the time zone of the application.

254 Integrating Data With External Applications

Table 37. REST query parameters (continued)

Name Type or value Description Default

_ulcr Boolean If true, a POST method returns a link to the new
resource in the HTTP header Location property.

False

_urs Boolean If true, a query response includes the rowstamp
value for the resource.

_usc Boolean If true, in-session scrolling is used and the HTTP
response includes the resource collection ID by
using the _rlid property.

False

_uw Specifies an SQL WHERE clause to be used as the
selection criteria. The clause must be compatible
with a clause that works in advanced searches in
applications. Use with the
mxe.rest.whereclause.usepolicy system property.

_verbose Boolean If true, the resource response for JSON
representation is returned as formatted.

False

_vt Boolean If true, the XML is validated for valid XML
characters. If you set the parameter to false, no
validation is run and therefore performance might
improve.

If this parameter is not specified, the
mxe.int.validatexml system property determines
whether XML is validated.

True

Related concepts:
“In-session scrolling” on page 239
Holding a resource collection in memory can improve performance when scrolling
through pages of data.
“_format and _compact parameters” on page 237
The REST API supports XML and JSON representations (formats). You can use the
_format parameter or content negotiation to specify a resource representation. You
can use the _compact parameter to specify compact JSON format.
“_dropnulls parameter” on page 236
Set the _dropnulls parameter to false to include fields that have a null value in the
query response.
“_includecols and _excludecols parameters” on page 235
Use the _includecols and _excludecols parameters to control the content of
attributes that are returned in response to a query.
“_rsStart and _maxItems parameters” on page 233
The _rsStart and _maxItems parameters are used together to control the number of
records returned for a request and to allow paging through a large volume of
records.
“_opmodeor parameter” on page 233
Use the _opmodeor parameter to evaluate multiple fields by using an OR condition
between values instead of the default AND condition.
“_orderbyasc parameter” on page 234
The _orderbyasc parameter controls the sort order of returned data.
Related reference:
“HTTP header properties” on page 247
Several HTTP header properties are relevant to the REST API.

Integrating data with external applications 255

“REST system properties”
System properties are available to configure how the REST API works for your
specific requirements.

REST system properties
System properties are available to configure how the REST API works for your
specific requirements.

Predefined system properties

Use the following system properties to configure how the REST API works. The
properties all start with mxe.rest, such as mxe.rest.format.json.mimetypes.

Table 38. Predefined REST system properties

mxe.rest.property name Description Default value

format.json.mimetypes A comma-separated list of
supported MIME types for JSON
that is included in the HTTP
Accept header property. The value
is used only for content
negotiation and is superseded by
query parameters that specify a
format.

application/json

format.xml.mimetypes A comma-separated list of
supported MIME types for XML
that is included in the HTTP
Accept header property. The value
is used only for content
negotiation and is superseded by
query parameters that specify a
format.

application/xml,text/xml

handler.mbo The resource handler class file for
business objects.

com.ibm.tivoli.maximo.rest.
MboResourceRequestHandler

handler.os The resource handler class file for
object structures.

com.ibm.tivoli.maximo.rest.
OSResourceRequestHandler

handler.ss The standard service handler class
file that supports access to system
data.

com.ibm.tivoli.maximo.rest.
MaxServiceResourceRequestHandler

mbo.blockaccess A comma-separated list of business
objects that the REST API cannot
access. This property overrides any
configured authorization
restrictions.

mbo.defaultformat The default representation for all
business objects. This property is
superseded by the value of the
Accept header that is used in
content negotiation and by query
parameters that specify a
representation.

xml

mbo.imglib.defaultformat The REST default representation
for the IMGLIB business object.

image

256 Integrating Data With External Applications

Table 38. Predefined REST system properties (continued)

mxe.rest.property name Description Default value

os.blockaccess A comma-separated list of object
structures that the REST API
cannot access. This property
overrides any configured
authorization restrictions.

os.defaultformat The default representation for all
object structures. This property is
superseded by the value of the
Accept header property that is
used in content negotiation and by
query parameters that specify a
representation.

xml

serializer.mbo.imglib.image The serializer class for the IMGLIB
business object that is in image
format.

com.ibm.tivoli.maximo.rest.
ImageLibSerializer

serializer.mbo.json The serializer class for business
objects that are in JSON format.

com.ibm.tivoli.maximo.rest.
MboJSONSerializer

serializer.mbo.xml The serializer class for business
objects that are in XML format.

com.ibm.tivoli.maximo.rest.
MboXMLSerializer

serializer.os.json The serializer class for object
structures that are in JSON format.

com.ibm.tivoli.maximo.rest.
OSJSONSerializer

serializer.os.xml The serializer class for object
structures that are in XML format.

com.ibm.tivoli.maximo.rest.
OSXMLSerializer

serializer.ss.json The serializer class for standard
service system data that is in JSON
format.

com.ibm.tivoli.maximo.rest.
ServiceMethodResponseJSONSerializer

serializer.ss.xml The serializer class for standard
service system data that is in XML
format.

com.ibm.tivoli.maximo.rest.
ServiceMethodResponseXMLSerializer

ss.defaultformat The default representation for all
standard service system data. This
property is superseded by the
value of the Accept header
property that is used in content
negotiation and by query
parameters that specify a
representation.

xml

supportedformats The list of supported
representations.

xml,json,image

webappurl The URL for the token
authentication web application.
This property is for internal use
only.

whereclause.usepolicy Specifies how the _uw query
parameter is used. If the value is
parse, the SQL WHERE clause is
inspected to prevent cross-site
scripting and SQL injection attacks.
If the value is noparse, the clause
is not inspected. If the value is
anything else, the WHERE clause
is ignored.

parse

Integrating data with external applications 257

Optional system properties for caching

You can create the following properties to configure caching in the REST API. The
properties all must start with mxe.rest, such as mxe.rest.mbo.wo.cache

Table 39. Optional REST system properties for caching

mxe.rest.property name Type Description Examples

handler.resource.cache Boolean Enables pessimistic caching for
the specified handler and
resource.

Defaults to false.

mxe.rest.mbo.wo.cache set to 1

mxe.rest.os.mxwo.cache set to 1

handler.resource.deepetag Boolean If optimistic caching is enabled,
specifies that all objects in the
object structure are evaluated
instead of just the root object.

Defaults to false.

handler.resource.optimistic Boolean Enables optimistic caching for
the specified handler and
resource. Applies to collections
of one or more resources.

For an object structure, only the
main business object is
evaluated for a change in state.
Child business objects are not
evaluated. Non-persistent
attributes of a business object
are excluded from the
evaluations of state changes.

If you enable optimistic caching,
you can also specify the
handler.resource.deepetag
system property.

Defaults to false.

mxe.rest.mbo.wo.optimistic set
to 1

mxe.rest.os.mxwo.optimistic
set to 1

handler.resource.maxage Integer, in
seconds

Specified the maximum amount
of time, in seconds, that a
resource collection is
maintained in the cache.

mxe.rest.mbo.wo.maxage set to
60

mxe.rest.os.mxwo.maxage set to
60

Related concepts:
“Caching of GET requests” on page 239
By enabling the caching of GET requests, you can improve the response times of
requests for resource data that were previously submitted by the same user.
“Supported representations” on page 227
The REST API supports XML and JSON as representations. Representations are
supported by the implementation of serializer classes that are registered in system
properties.
Related reference:
“REST query parameters” on page 252
By using query parameters, you can tailor and filter the responses.
“HTTP header properties” on page 247
Several HTTP header properties are relevant to the REST API.

258 Integrating Data With External Applications

External service calls
External REST APIs can be called by using a configured HTTP end point.

The HTTP handler that supports any configured HTTP end point enables the use
of REST-based services that use an XML payload and that use POST and GET
methods. The end point can be configured to send messages through a publish
channel or an invocation channel.

OSLC integration
Maximo Integration Framework supports the sharing of lifecycle data between
applications based on Open Services for Lifecycle Collaboration (OSLC)
integration. With OSLC integration, a consumer application can perform create,
request, update, and delete operations on the data resources that a provider
application makes available for integration through an OSLC service provider.

An OSLC provider application makes containers of associated data resources
available for integration through service providers. Consumer applications then use
these service providers to query resources and to create, update, and delete
resource data. The following figure shows the typical interactions in an OSLC
integration. The consumer application sends a query to the service provider for
resource data. The service provider provides a link to the resource data in
response. The consumer application uses the link to create, update, or delete
resource data.

Service provider

OSLC provider
application

Query interaction

Resource links

OSLC consumer
application

Create interaction

Resource link returned

Consumer application uses the resource link
to update or delete a resource

Resource link returned

Resource data

Related information:

Open Services for Lifecycle Collaboration community

OSLC on OASIS Open Standards Network

OSLC platform community (IBM)

OSLC implementation in Maximo Asset Management
OSLC specifications for representing and exchanging linked data between
applications are maintained and developed by the OASIS consortium. Maximo
Asset Management supports version 2.0 of the OSLC core specification that you
can enable and extend with Maximo Integration Framework.

Integrating data with external applications 259

http://www.open-services.net
http://www.oasis-oslc.org/
https://www.ibm.com/developerworks/servicemanagement/oslcp/index.html

OSLC specifications define how lifecycle applications represent, link to, and access
resources based on established internet and linked-data standards including
representational state transfer (REST) architecture, resource description framework
(RDF) specifications, and hyper-text transfer protocol (HTTP) methods.
Specifications are designed to be minimal in nature to address common integration
use cases and integrators can extend these specifications or add new ones to
address specific integration scenarios.

Maximo Asset Management is configured as an OSLC provider with the following
components:
v In the OSLC Resources application, you configure the data resources for

integration. Each OSLC resource is based on an object structure that specifies the
primary business object and any associated child business objects that can be
integrated.

v OSLC resources are generated as shape documents that describe the resource
objects in RDF/XML format. A shape document indicates what are the required
characteristics of a resource and can also describe many aspects of the resource
object, including its dependencies, attributes, and properties. A resource shape
document can include links to the shape documents for any child objects of the
resource.

v Resources are grouped by functional domain. Functional groupings can be based
on the existing domain specifications that are developed and maintained by the
OASIS OSLC group. Integrators can extend these existing domain specifications
or create additional domain specifications to support business requirements.

v The resources in a domain are made available to OSLC consumers through
service providers.

v A single service provider is supported for each domain. Service providers
support the OSLC creation factory and query capability operations that provide
OSLC consumers with the URI to create or search supported resources.

v The security framework supports authentication and authorization for OSLC
services. Maximo Asset Management native authentication and J2EE
authentication are supported. Authorization control is provided by the object
structure for a resource and application-level and user-based authorization are
applied.

An OSLC consumer uses the following HTTP methods and header information to
interact with the OSLC provider:
v Sends a GET request to perform login if explicit login is required and includes

an authorization property in the HTTP header if native authentication is used. If
explicit logout is required, a GET request is also used.

v Sends GET requests that include OSLC query parameters to a service provider
URI to query OSLC resources.

v Sends a POST request to create an instance of an OSLC resource. The request
includes a JSON document that conforms to the published shape document for
the OSLC resource. When the resource instance is created, the OSLC provider
sends a HTTP response that includes the URI for the new resource.

v Sends a PUT or PATCH request to update an OSLC resource. A PUT request
updates the entire resource. A PATCH request updates part of the resource.

v Uses entity tags (ETags) in HTTP headers to ensure that a resource entity is
current and can combine ETags with If-Match headers in PUT and PATCH
requests to enable conditional updates.

v Can request stable paging in GET requests for collection resources so that the
response redirects the consumer application to a URI where multiple pages are

260 Integrating Data With External Applications

loaded. For collection resources, performance improves because the OSLC
consumer can load stable pages without accessing the database for each page.

OSLC configuration
The configuration of Maximo Asset Management as an OSLC provider involves
specifying resources within domains, provisioning service providers for those
domains, security configuration, and setting up logging to collect information to
assist with troubleshooting.

Specification of OSLC resources
OSLC resources are based on integration object structures that are configured to be
consumed by OSLC. Each object structure includes the primary business object and
any child business objects that are used by an application. Attributes of the objects
in the object structure are mapped to the RDF types and predicates for the resource
and specify the namespaces for the resource types.

Each OSLC resource type has properties that are RDF predicates that can belong to
a vocabulary specification that corresponds to the namespace for the properties.
The attributes can map to the properties that are defined in vocabulary
specifications such as the Dublin Core Metadata Initiative.

Each resource has a name, an associated object structure that is consumed by
OSLC, and the default namespace URI for the resource. For each attribute to be
integrated, you can either use the default RDF values or specify your own values:
v The type and namespace values serve as the RDF type for the resource.
v The name and namespace values serve as the RDF predicate for the resource.

A resource shape document is an RDF/XML document that describes a resource,
including all of its properties, attributes, and dependencies. A shape document in
OSLC is an electronic way to see what a resource looks like including all of its
dependencies, attributes, and properties. For example, a work order shape
document includes properties that describe supporting resources such as asset,
task, labor, and work log. Shape documents can cover a wide variety of areas such
as assets, companies, purchase orders, and work orders. A shape document also
shows what is required. A resource shape document can include links to the shape
documents for child objects.

Example: Work order resource shape document

A work order resource shape document lists all of the properties, attributes, and
dependencies of a work order. The following code shows an excerpt from a work
order shape document called oslcwodetail. Three properties are included in this
portion of the resource shape document but the document can have many more
properties listed. The three properties in this portion of the shape document
represent three types of nodes that are found in RDF documents. The first
property, genforporevision, is a local node. The second property, multiassetlocci, is
a blank node which means that no URI or literal is listed for this property in the
RDF. The third property, asset, is a URI node.
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:dcterms="http://purl.org/dc/terms/>"

<oslc:ResourceShape rdf:about="http://host/maximo/oslc/shapes/oslcwodetail">
<oslc:describes rdf:resource="http://jazz.net/ns/ism/work/smarter_physical_

infrastructure#WorkOrder"/>
<oslc:property>
<oslc:Property>

<oslc:name>genforporevision</oslc:name>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>

Integrating data with external applications 261

<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/asset/smarter_physical_
infrastructure#genforporevision"/>

<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
<dcterms:title rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral">

PO Revision</dcterms:title>
</oslc:Property>

</oslc:property>
<oslc:property>

<oslc:Property>
<oslc:name>multiassetlocci</oslc:name>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-many"/>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/asset/smarter_physical_

infrastructure#multiassetlocci"/>
<oslc:valueType rdf:resource="http://open-services.net/ns/core#LocalResource"/>
<oslc:representation rdf:resource="http://open-services.net/ns/core#Inline"/>
<oslc:valueShape rdf:resource="http://host/maximo/oslc/shapes/oslcwodetail/multiassetlocci"/>
<oslc:range rdf:resource="http://jazz.net/ns/ism/asset/smarter_physical_

infrastructure#MultuAssetLocationCI"/>
</oslc:Property>

</oslc:property>
<oslc:property>

<oslc:Property>
<oslc:name>asset</oslc:name>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/work/smarter_physical_

infrastructure#asset"/>
<oslc:valueType rdf:resource="http://open-services.net/ns/core#Resource"/>
<oslc:representation rdf:resource="http://open-services.net/ns/core#Reference"/>
<oslc:valueShape rdf:resource="http://host/maximo/oslc/shapes/oslcasset"/>
<oslc:range rdf:resource="http://jazz.net/ns/ism/asset/smarter_physical_infrastructure#asset"/>
<dcterms:title rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral">

Asset</dcterms:title>
</oslc:Property>

</oslc:property>

Domain service providers
OSLC resources are enabled within a domain and are available to OSLC consumers
through the OSLC service provider for the domain. A single service provider for
each domain is supported.

In Maximo Asset Management, you can discover what service providers are
available by entering the http:/host:port/maximo/oslc/sp URI in a browser. The
response includes the URI for the service provider document for each domain that
is configured for OSLC integration.

The URI for the service provider document for the work management domain, for
example, is http://host:port/maximo/oslc/sp/WorkManagment. The service provider
document is in RDF/XML format and describes the available resources and
namespace mappings, saved queries, and the operations that are supported for the
resources that it supports. An OSLC consumer can use the service provider
document to determine which resources are available and what services it
supports, such as query or creation. The current implementation supports create,
request, update, and delete operations at data level but resources in delegated user
interface scenarios are not supported.

In the following sample response, the OSLC service provider is referred from the
rdfs:member property. The service provider document for the domain shows the
URI for work management:
<rdfs:member rdf:resource="http://host/maximo/oslc/sp/WorkManagement">

<rdf:RDF>
<rdf:Description rdf:about="http://host/maximo/oslc/sp">
<rdfs:member rdf:resource="http://host/maximo/oslc/sp/WorkManagement">
</rdf:Description>
</rdf:RDF>

262 Integrating Data With External Applications

Namespaces

OSLC defines common namespaces. The prefixDefinition property exposes all the
prefix-to-namespace mappings that the service provider uses to describe the
resources that it manages. The following table shows a sample of the namespaces
that are available:

Prefix Namespace

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

oslc http://open-services.net/ns/core#

dcterms http://purl.org/dc/terms/

asset http://open-services.net/ns/asset#

foaf http://xmlns.com/foaf/0.1/

rdfs http://www.w3.org/2000/01/rdf-schema#

rr http://jazz.net/ns/ism/registry#

spi http://jazz.net/ns/ism/asset/smarter_physical_infrastructure#

The following excerpt from the service section of the service provider document
shows the OSLC and RDF namespaces:
<oslc:ServiceProvider rdf:about="http://host:7001/maximo/oslc/sp/WorkManagement">
<oslc:prefixDefinition>
<oslc:PrefixDefinition>
<oslc:prefixBase rdf:resource="http://open-services.net/ns/core#"/>
<oslc:prefix>oslc</oslc:prefix>

</oslc:PrefixDefinition>
</oslc:prefixDefinition>

<oslc:prefixDefinition>
<oslc:PrefixDefinition>
<oslc:prefixBase rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
<oslc:prefix>rdf</oslc:prefix>

</oslc:PrefixDefinition>
</oslc:prefixDefinition>

The following table shows a sample mapping for a work order that uses common
namespaces:

OSLC prefix Existing prefix

oslc:shortTitle wonum

dcterms:title description

dcterms:description description_longdescription

dcterms:creator reportedby

dcterms:created reportdate

dcterms:identifier workorderid

The following table shows the mappings for the person object that is referred to
from dcterms:creator in the workorder.

OSLC prefix Existing prefix

foaf:name displayname

foaf:givenName firstname

foaf:familyName lastname

Integrating data with external applications 263

Creation factory and query operations

An OSLC service provider supports the creation factory and query capability
operations for the resources that are available in the service provider document. A
creation factory provides the oslc:creation Creation URI that you use to create new
resources with a HTTP POST request. The oslc:queryBase query URI enables the
selection of a resource collection that is managed by the service provider. When the
resource is obtained, either by query or creation, the resource can be updated or
deleted.

If the resource supports creation, there can be one creation factory operation. The
following excerpt from a service provider document shows the creation factory
operation, the URI for the resource shape, and the URI for the creation resource
operation that creates the shape.
<oslc:creationFactory>
<oslc:CreationFactory>
<oslc:resourceType rdf:resource="http://jazz.net/ns/ism/work

/smarter_physical_infrastructure#WorkOrder"/>
<oslc:resourceShape rdf:resource="http://host:port/maximo/oslc/shapes/oslcwodetail"/>
<oslc:creation rdf:resource="http://host:port/maximo/oslc/os/oslcwodetail"/>
<oslc:label>Create WorkOrder</oslc:label>
<dcterms:title>OSLC creation factory for WorkOrder</dcterms:title>

</oslc:CreationFactory>
</oslc:creationFactory>

......

The query URI is oslc:queryBase, and the following example shows a search for a
work order by using the request:
<oslc:queryBase rdf:resource="http://host/maximo/oslc/os/oslcwodetail"/>

<oslc:queryCapability>
<oslc:QueryCapability>
<oslc:resourceType rdf:resource="http://jazz.net/ns/ism/work/smarter_physical_

infrastructure#WorkOrder"/>
<oslc:queryBase rdf:resource="http://host/maximo/oslc/os/oslcwodetail"/>
<oslc:labelQuery> WorkOrder</oslc:label>
<dcterms:title>OSLC query capability for WorkOrder</dcterms:title>

</oslc:QueryCapability>
</oslc:queryCapability>

Saved queries
When an OSLC resource is defined based on an object structure that references an
application, all the public saved queries from the application are made available
through the service provider. The queries are exposed as OSLC query capabilities
in the service provider document for that OSLC resource.

Object structures can be optionally connected to an application. When an object
structure is connected to an application, the application provides security
authorization and public saved queries to the resource that is associated with the
object structure. You can create custom queries in the application and make them
public, and the queries are then available when querying the resource. To run a
saved query against a resource, you perform an HTTP GET request on the query
base URI that is provided in the query capability for the saved query. A list of
OSLC resources that match the saved query are returned.

Each query capability property exposes a URI called oslc:queryBase property that
enables a consumer to search the resources that are managed by the service
provider. Each query capability supports only one resource type called
oslc:resourceType. The OSLC specification allows a query capability to support
multiple resource types. The query capability lists all of the public saved queries
for the application that is registered with the object structure that implements the
OSLC resource. If there are no public saved queries for the registered application

264 Integrating Data With External Applications

or if no application was registered, only one query capability provides the generic
query collection URI. There is always at least one query capability for each
resource type that is supported by the service provider.

Example: Saved queries in the Work order application

You create a query in the Work Order application to search for work orders that
you own. You make the query public so that the query appears in the service
provider document as savedQuery=OWNER+IS+ME. TheOSLC top-level object structure
must also be work order.
<oslc:service>

<oslc:Service>
<oslc:queryCapability>
<oslc:QueryCapability>
<oslc:resourceType rdf:resource="http://jazz.net/ns/ism/work/smarter_physical_

infrastructure#WorkOrder"/>
<oslc:queryBase rdf:resource="http://host/maximo/oslc/os/oslcwodetail?

savedQuery=OWNER+IS+ME"/>
<oslc:label>Query OWNER IS ME</oslc:label>
<dcterms:title>OSLC query capability for My Work Orders</dcterms:title>

</oslc:QueryCapability>
</oslc:queryCapability>
<oslc:queryCapability>
<oslc:QueryCapability>
<oslc:resourceType rdf:resource="http://jazz.net/ns/ism/work/smarter_physical_

infrastructure#WorkOrder"/>
<oslc:queryBase rdf:resource="http://host/maximo/oslc/os/oslcwodetail"/>
<oslc:label>Query WorkOrder</oslc:label>
<dcterms:title>OSLC query capability for WorkOrder</dcterms:title>

</oslc:QueryCapability>
</oslc:queryCapability>
......

OSLC security
Authentication and authorization support for OSLC services is provided by the
Maximo Asset Managementsecurity framework. J2EE-based authentication such as
LDAP is supported through the application server. The application server also
provides support for HTTPS.

Native authentication to Maximo Asset Management

The consumer request can provide the user:password values that are base64 encoded
and are in the MAXAUTH HTTP header property.

J2EE authentication

To configure J2EE authentication, you modify the web.xml file, set security
constraints and set the useAppServerSecurity property to true.

You modify the web.xml file for the maximouiweb web module by uncommenting
the following lines:
<!--
<servlet>
<display-name>OSLC Servlet for Web App</display-name>
<servlet-name>OSLCServlet</servlet-name>
<servlet-class>

com.ibm.tivoli.maximo.oslc.provider.MaximoOslcProviderServlet
</servlet-class>
<init-param>
<param-name>char_encoding</param-name>
<param-value>UTF-8</param-value>
</init-param>
</servlet>
-->

Integrating data with external applications 265

<!--servlet-mapping>
<servlet-name>OSLCServlet</servlet-name>
<url-pattern>/oslc/*</url-pattern>
</servlet-mapping

To configure security constraints, you enter the following code for
<web-resource-collection>:
<web-resource-collection>
<web-resource-name>OSLC Servlet</web-resource-name>
<description>

OSLC Object Structure Servlet accessible by authorized users
</description>
<url-pattern>/oslc/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>
<http-method>HEAD</http-method>
</web-resource-collection>

The useAppServerSecurity property must be set to true:
<env-entry>
<description>

Indicates whether to use Application Server security or not
</description>
<env-entry-nameuseAppServerSecurity</env-entry-name>
<env-entry-typejava.lang.String</env-entry-type>
<env-entry-valuefalse</env-entry-value>
</env-entry>

Explicit login and logout

If the consumer application needs to run explicit login commands, you use the
following request:
GET /maximo/oslc/login

If you are using native authentication, you must add the MAXAUTH HTTP header
property to the login request. If the consumer application needs to run explicit
logout commands, you use the following request:
GET /maximo/oslc/logout

Authorization

Authorization control is provided at the object structure level of the resource. You
associate the object structure to an application in the Object Structure application.
The security processing of the resource data is then based on both the
configuration of security of the application and the user group of the user who
made the HTTP request. When OSLC resources are processed, any object attribute
that is configured as hidden through security is not included in the response to an
OSLC request.

OSLC logging
Log correlation can record information when OSLC resources are created or
updated. The information that is logged includes the total response time and the
size of the resource in bytes. The information can be used for performance
analysis. For example, you can use the log information to analyze response times.

266 Integrating Data With External Applications

To enable log correlation so that information is recorded during GET, POST and
PUT requests, go to System configuration > Platform configuration > System
properties application and ensure that the mxe.logging.CorrelationEnabled
property is set to 1.

The following table shows some of the information that might be logged when you
enable the mxe.logging.CorrelationEnabled property. Some of the attributes in the
table might not be available for every request.

Attribute Description

ClientIP IP address of the client that makes the request of the server
through OSLC.

InvokeAndSerTime Time that is taken for invocation and serialization.

SendResponseTime Time that is required for the server to respond to a client
request.

RequestURI Universal resource identifier of the client.

RequestParams Parameters that are passed in the URI of the client.

ElapsedTime Total time that is required from client request to server
response.

LoginID User name that is associated with a client authentication
request.

ResourceSize Size of the resource in bytes.

EndUserClientIP IP address of the end user who makes the request of the
server.

EndUserMetaData Data that is associated with the actual end client user.
Requests are often delivered through an intermediary server.
This attribute, when present, always contains end user data.

ClientPort Port number that the client uses to make a request of the
server.

HTTP transactions
Interactions between OSLC consumer and the OSLC resources provided by
Maximo Asset Management use standard HTTP requests and responses. Supported
HTTP request methods include GET, POST, PUT, and PATCH. HTTP responses
provide information in HTTP headers and HTTP error codes are returned when
requests are not successful.

OSLC resource queries
OSLC defines a lightweight query syntax that is based on SPARQL standard to
query resources. The OSLC query parameter that is set in a HTTP GET request
determines the type of information that the service provider sends in response.

Query properties parameter:

The oslc.properties query parameter returns a list of properties for an OSLC
resource and provides a partial representation of the resource.

The oslc.properties parameter is applicable only when you are retrieving a single
resource based on a resource ID. Other query parameters apply when you want to
query a resource collection which contains zero or more instances of a resource.

Integrating data with external applications 267

Example: Requesting attributes

The following request specifies that the values for the shortTitle and isTask
attributes are returned in the results of a query of the oslcwodetail resource with a
resource ID of 337:
http://www.example.com:9999/maximo/oslc/os/
oslcwodetail/337?oslc.properties=oslc:shortTitle,spi_wm:istask

This request returns the following information:
{

oslc:shortTitle: "1024"
spi_wm:istask: true
rdf:about: "<some uri>"

}

Query WHERE clause parameter:

The oslc.where query parameter specifies a WHERE clause for filtering the result
set of a query. For example, you might want to see a collection of OSLC work
order resources that were created within a time range where the work orders are
approved by management.

The OSLC WHERE clause supports the following comparison operators:

Symbol Description

= Equality

!= Inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

OSLC WHERE clause parameters have the following characteristics:
v Dates are expressed in ISO 8601 format.
v The OSLC specification supports and as the boolean operator between boolean

expressions. The boolean operator or is not supported.
v String data type values are surrounded by quotation marks but decimal data

type values do not have quotation marks.
v Decimal data type values are not surrounded by quotation marks. In the

following example, the literal value for status is in quotation marks because the
status property has a data type of string. The quantity value does not have
quotation marks because it is a decimal data type. Integers and boolean values
also do not require quotation marks. For example, spi_wm:status="Closed" and
m:quantity>10.5 and m:active=true where m:active has a boolean data type.

v The WHERE clause supports or within a single property by using the in
operator. For example, the following query returns all work orders that are in
either APPR or WAPPR status:
spi_wm:status in ["APPR","WAPPR"]

268 Integrating Data With External Applications

Example: Searching for work orders that were created within a time range and
are approved

The following WHERE clause query returns a list of work order resources that
were created within a specific time range:
spi_wm:status="APPR" and dcterms:created>"2003-07-07T09:50:00-04:00"
and dcterms:created<="2004-07-07T09:50:00-04:00"

Example: Searching for all work orders created by a user

The following WHERE clause query returns all work orders that were created by a
specific user or person:
dcterms:creator= <http://host:port/oslc/os/oslcperson/
<URI id for person Kelly Reese>

The URI value is delimited by angle brackets and is not surrounded by quotation
marks, unlike string literal values. The URI points to the person resource named
Kelly Reese. Although the use of a URI in the query syntax works for peer system
integrations, interactive or UI-based consumers of the OSLC API would not know
any of the relevant URIs. For example, an interactive user would know an asset
number but would not know the URI that corresponds to that asset. The following
WHERE clause query is expressed without a URI:
dcterms:creator{foaf:givenName=”Kelly” and foaf:familyName=”Reese”}

givenName and familyName are properties of the Person resource that is referred
from the creator property. This WHERE clause demonstrates that you can search
based on linked resource properties.

Example: Searching for all work orders where the parent property of the work
order resource is null

The following WHERE clause query returns all root-level work orders:
spi_wm:parent!=”*”

In this example, * is a wildcard that refers to any resource and the parent!="*"
query is the semantic equivalent of a parent="NULL" query.

A derivative of this query checks for work orders where the parent value is not
NULL. The syntax of this query is spi_wm:parent=”*”. You can also perform a
LIKE search with the OSLC WHERE clause query syntax. To search for all of the
work orders that have a shortTitle value such as Inspect, you use the following
query: oslc:shortTitle =”%Inspect%”.

To search for work orders that have a shortTitle value that begins with or ends
with a word that you specify, you move the %. For example, use oslc:shortTitle
=”Inspect%” to search for work orders that start with the word Inspect and use
oslc:shortTitle =”%Inspect” to search for work orders that end with the word
Inspect.

Query search parameter:

The oslc.searchTerms query parameter returns resources that contain specified
terms. For example, you might want to see all of the work orders that have the
words database and performance in their descriptions.

Integrating data with external applications 269

To search for terms, the field that you search against must be configured for search
in the OSLC Resources application.

Example: Searching for work orders that refer to database performance

The following request queries work order resources by selecting the short title,
status, and description where the description contains the terms database and
performance:
http://host:7001/maximo/oslc/os/oslcwodetail?oslc.select=oslc:shortTitle,
spi_wm:status,dcterms:description&oslc.searchTerms=database,performance

The query returns the following information:
-
"rdfs:member": [
-
{
"oslc:shortTitle": "1001",
"rdf:about": "http://host/maximo/oslc/os/oslcwodetail/76",
"spi_wm:status": "INPRG",
"dcterms:description": "performance is key<!--RICH TEXT -->"
},
-
{
"oslc:shortTitle": "2004",
"rdf:about": "http://host/maximo/oslc/os/oslcwodetail/58",
"spi_wm:status": "INPRG",
"dcterms:description": "all the database and stuff<!--RICH TEXT -->"
},
-
{
"oslc:shortTitle": "6003",
"rdf:about": "http://host/maximo/oslc/os/oslcwodetail/8",
"spi_wm:status": "APPR"
},
-
{
"oslc:shortTitle": "1004",
"rdf:about": "http://host/maximo/oslc/os/oslcwodetail/155",
"spi_wm:status": "INPRG",
"dcterms:description": "Performance is key"
},
-
{
"oslc:shortTitle": "1006",
"rdf:about": "http://host/maximo/oslc/os/oslcwodetail/73",
"spi_wm:status": "APPR"
}
],
"rdf:about": "http://host/maximo/oslc/os/oslcwodetail"
-
"prefixes":{
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"oslc": "http://open-services.net/ns/core#",
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"spi_wm": "http://jazz.net/ns/ism/work/smarter_physical_infrastructure#",
"dcterms": "http://purl.org/dc/terms/"
}
}

Query sort parameter:

The oslc.orderBy query parameter defines how the results of a query are ordered.
For example, a list of work orders can be ordered by date or by ID.

270 Integrating Data With External Applications

Example: Specify the sort order

The following oslc.orderBy query returns work orders based on the creation date
in ascending order and the estimated duration in descending order:
+dcterms:created,-m:estimatedDuration

In this query,+ indicates an ascending sort order and - indicates a descending sort
order. The following oslc.orderBy parameter is not valid: dcterms:created,-
m:estimatedDuration because there is no default sort order in OSLC query syntax.
There must be an explicit + or - with the property name. The oslc.orderBy
parameter is not supported for nested properties. For example,
dcterms:creator{+foaf:name} is not supported.

Query select parameter:

The oslc.select query parameter requests a partial resource representation of the
resources in a collection resource. The oslc.select parameter always applies to a
collection resource. You specify the list of properties to include in the request.

Example: Partial resource request

The oslc.select parameter provides a comma-separated list of qualified property
names. The oslc.prefix parameter is not supported. The following query requests
a partial resource:
oslc.select=oslc:shortTitle, dcterms:creator

The query returns the following information:
{
"rdf:about": "some uri",
"rdfs:member": [
{
"oslc:shortTitle": "1022",
"rdf:about": "some workorder uri",
"dcterms:creator":
{

"rdf:about": "some person uri"
}

Example: Selecting properties from referenced resources

With the oslc.select parameter, you can select properties from referenced
resources. The following query requests the name of the creator:
oslc.select= oslc:shortTitle, dcterms:creator{foaf:name}

The query returns the following information:
{
"rdf:about": "some uri",
"rdfs:member": [
{
"oslc:shortTitle": "1022",
"rdf:about": "some workorder uri",
"dcterms:creator":
{

"rdf:about": "some person uri",
"foaf:name": "Todd Winston"

}

Integrating data with external applications 271

In this example, the foaf:Person resource is the name of the person that is specified
in the creator property value. To get all the properties from the resource, you can
use oslc.select=*. The same syntax can be applied to the oslc.properties
parameter when you search for an OSLC resource.

Creation of a resource instance
A consuming application uses the HTTP POST method to create an instance of an
OSLC resource. Other applications can then share the resource.

The consuming application uses the HTTP POST method to send a JSON
document that conforms to the published shape of the resource. The OSLC JSON
format is associated with the application/json MIME type. When the request is
processed successfully, the header of the HTTP response from the provider
application includes the URI of the newly-created resource.

Example: Creating an instance of a resource

The following method creates the oslcwodetail resource:
POST /maximo/oslc/os/oslcwodetail
....
{

"dcterms:creator": {
"rdf:resource": "http://host:port/maximo/oslc/os/oslcperson/_V0lOU1RPTg--"

},
"dcterms:title": "Check-out Leaking",
"spi_wm:orgid": "EAGLENA",
"spi_wm:siteid": "BEDFORD",
"spi_wm:woclass": "WORKORDER",
"oslc:shortTitle": "T5050",
"spi:asset": {

"rdf:resource": "http://host:port/maximo/oslc/os/oslcasset/_MTMxNDUvQkVERk9SRA--"
},
"spi:location": {

"rdf:resource": "http://host:port/maximo/oslc/os/oslcoperloc/_U0hJUFBJTkcvQkVERk9SRA--"
},
"spi:status": "WAPPR"

}.....

If the request is processed successfully, the consumer application receives the
following response:
201 Created
Location: http://host:port/maximo/oslc/os/oslcwodetail/_ABCD--
ETag: 1234567

The message body of the HTTP response is empty. To get details of the
newly-created resource, the consumer application must send an HTTP GET request
to the URI that is specified in the HTTP header location property. The consuming
application can use the ETag property in the HTTP header to send a conditional
update request to the provider application.

OSLC requests can fail for various reasons, such as business validation,
authentication, or authorization. If a request fails, the consuming application
receives an HTTP error code as a response, such as a 400 Bad Request error and
the message body contains the details of the error.

Modification of resources
The HTTP PUT method replaces an OSLC resource and the HTTP PATCH method
partially updates an OSLC resource.

272 Integrating Data With External Applications

Replacement of an OSLC resource:

The HTTP PUT method replaces all of the properties of an OSLC resource,
including literal properties and local resource properties. The PUT method also
deletes any local resource properties that are not included in the request.

When you use the PUT method to replace an OSLC resource, the following rules
apply:
v All literal properties that are specified in the HTTP request document are

updated. Any literal property that is not specified as part of the request is not
explicitly affected by the request. However, literal properties can be implicitly
affected by the business logic that is associated with the resource.

v All local resource properties are replaced by their corresponding values in the
request. When a resource property is included in a PUT request, the value
replaces the value on the server. If a resource property is not included in a
HTTP request, the corresponding property is deleted on the server.

v You cannot explicitly update reference resources but you can update properties
that refer to the resource, and the properties follow the update model of literal
properties.

In the following examples, a work order resource has one literal property, title,
and one resource property wplabor. The wplabor property points to the local
resource WPLABOR and is associated with two wplabor records. If a PUT request
contains the title property and no wplabor property, the title is updated and the
wplabor data is deleted.

Example: Updating a literal property

The following method updates the literal property, title and deletes the wplabor
property and the associated data:
PUT /maximo/oslc/os/oslcwodetail/abc

{
"dcterms:title": "Check-out Leaking – Modified for Test"

}

If the request is processed successfully, the consuming application receives the
following HTTP response:
204 No Content
ETag: 123456

The title is changed to Check-out Leaking – Modified for Test. Because the
wplabor data is not included, the wplabor records are deleted.

Example: Updating a resource property

The following method updates the resource property, wplabor:
PUT /maximo/oslc/os/oslcwodetail/abc

{
“spi:wplabor”: [

{
“spi_wm:wplaborid": "0000000067",

"spi_wm:rate": 18.5
}

]
}

Integrating data with external applications 273

If the request is processed successfully, the consuming application receives the
following HTTP response:
204 No Content
ETag: 123456

The request initiates a search for a wplabor record with the ID 0000000067. If this
wplabor record exists, it is updated. If no matching record is found, a new wplabor
record is created with the ID 0000000067. All other wplabor data for this work
order resource is deleted. Because the title property is not included, the title is
not part of the request and the value is unaffected.

Partial update of an OSLC resource:

The HTTP PATCH method updates part of an OSLC resource. Unlike the PUT
method, the PATCH method does not delete local resource properties that are not
included in the request. The x-method-override header is required to implement
the PATCH method.

When you use the PATCH method to replace an OSLC resource, the following
rules apply:
v All literal properties that are specified in the request document are updated. Any

literal property that is not specified as part of the request is not explicitly
affected by the request. However, literal properties can be implicitly affected by
the business logic that is associated with the resource.

v Local resource properties are updated or replaced if there are corresponding
property values in the PATCH request. If a resource property is not included in
the request, the corresponding local resource is not explicitly affected by the
request. If a resource property is included in the request, the incoming value
replaces or updates the value in the server.

v You cannot explicitly update reference resources but you can update properties
that refer to the resource, and the properties follow the update model of literal
properties.

HTTP PATCH requests are used in the following scenarios:
v The PATCH request replaces an array (local resource) property with the content

in the request. This scenario is the default implementation.
v You can find and match array resource elements from the request with

corresponding resource elements on the server. Depending on whether a match
is found, the array resource elements are updated or inserted. An array element
is never deleted from the local resource property. To use a PATCH request to
match array elements, the consumer application sets the PATCHTYPE HTTP
request header to the value MERGE (case sensitive).

Example: Updating a literal property

The following method updates the title property of a work order:
POST /maximo/oslc/os/oslcwodetail/abcd
x-method-override: PATCH

{
"dcterms:title": "Check-out Leaking – Modified for Test"

}

Unlike the PUT method, this PATCH method does not update other properties of
the work order.

274 Integrating Data With External Applications

Example: Updating and merging a resource property

The following method updates the resource with the PATCHTYPE header set to
MERGE:
POST /maximo/oslc/os/oslcwodetail/abcd
x-method-override: PATCH
PATCHTYPE: MERGE

{
"dcterms:title": "Check-out Leaking – Modified for Test",
“spi:wplabor”: [

{
“spi_wm:wplaborid": "0000000067",

"spi_wm:rate": 18.5
}

]
}

The request initiates a search for a wplabor record with the ID 0000000067. If such
a wplabor record exists, the record is updated. If no match is found, a new
wplabor record is created with the ID 0000000067. Because the PATCHTYPE header
is set to MERGE, the other wplabor records for this work order resource remain
unchanged.

Example: Making a conditional update

The following method updates the resource if the ETag value is 1234567:
POST /maximo/oslc/os/oslcwodetail/abcd
x-method-override: PATCH
if-match: 1234567

If the ETag value is 1234567, the work order resource is updated and an HTTP 204
response is sent to the consumer application.

If the ETag value is not 1234567, the server responds with an HTTP 412
Precondition failed message. This message indicates that the resource was
updated by some other process and the requesting consumer application has an
out-of-date copy of the resource. The consumer application must perform a GET
request on the abcd resource to get a fresh copy of the resource.

HTTP headers
OSLC provides various values in the header section of HTTP requests and
responses to exchange additional information in transactions. These header values
support features such as stable paging, conditional updates of resources, or to
ensure that duplicate transactions do not occur following a HTTP connection
failure.

Conditional updates based on Etag values and If-Match headers

An entity tag (ETag) is a value that is included in a HTTP header response that
represents the current state of a resource. When an OSLC consumer application
makes a GET request, the response header includes an ETag value. The consumer
application includes the ETag value as part of an If-Match header in subsequent
PUT and PATCH update requests to ensure that changes are conditional and are
made only if the record has not changed since the ETag value was created. The
conditional update process detects bad updates and race conditions, for example
when two consumers try to update the same resource.

Integrating data with external applications 275

The consumer application stores the ETag header value and sends it as part of
HTTP If-Match header for a subsequent update request. The server evaluates the
If-Match header and determines whether the consumer application has an old
version or the most recent version of the resource. If the server determines that the
consumer application has the most recent version of the resource, the update is
implemented unless any business validation or database constraints are found. If
the server determines that the request contains an old version of the resource, it
returns an HTTP 412 precondition failed response. The consumer application must
get the resource again and submit an update request that is based on the updated
ETag.

The consumer application can submit an update request without an If-Match
header or with the If-Match header value set to * (asterisk). Submitting this request
is semantically equivalent to having no If-Match header in the update request. In
both cases, the update is unconditional. If the resource that is referred by the URI
exists and no business validation or database constraints are found, the update is
implemented.

Stable paging for collection resources

OSLC stable paging defines a paging pattern where the resource that is paged does
not change when it is being paged to the consumer application, for example to a
mobile device. Stable paging is supported only for collection resources and is not
the default paging format of HTTP servers. To request stable paging, the OSLC
consumer application includes the stablepaging query parameter in the HTTP
request or includes a stablepaging header in the request. The server loads the
requested collection resource in memory and the HTTP response redirects the
OSLC consumer application to the URI where the loaded collection resource is
stored. Subsequent requests for the next pages always load from the in-memory
resource and never from the database. Stable paging results in better performance
as the consumer application pages through the results.

Stable paging requires that the subsequent request for the next page is served by
the same server process or cluster member that served the initial request for stable
paging. The same server process is required because the resource is loaded in the
memory of that server process, not in the other cluster members. If a subsequent
request is load balanced to other members, the consumer application receives a 404
Not Found error. To avoid this error, ensure that in-session requests from a
consumer application are all served by the same server process.

Example of stable paging

The client requests an asset resource:
GET/oslc/os/oslcasset?stablepaging=true

The request produces the following response:
303 Redirecting
Location: http://host:port/../olscasset?stableid=1234

The client performs a GET request on the redirect URI:
GET../oslcasset?stableid=1234

The response is the first page of the collection. The URI for the next page is
embedded in the oslc:ResponseInfo object as part of the message. As the client
moves through the pages, the pages expire after they load. If the client is at page 3,
page 3 cannot be reloaded, nor can page 1 or page 2. Any attempt to reload those

276 Integrating Data With External Applications

pages generates an HTTP 410 error. The loaded resource stays in memory until it
expires based on an idle expiry time that is controlled by using the
mxe.oslc.idleexpiry system property. The idle expiry time indicates the period that
the resource was not accessed by the client. The client can request member
properties by using the oslc.select clause and order the resulting collection by
using the oslc.orderBy query parameter.

Setting the PATCHTYPE header to merge for partial resource updates

To minimize message size, for example for mobile applications, consumer
applications can use PATCH requests to limit updates to changed data only. To
update the child objects of an object structure, for example to update the work log
that is associated with a work order, the consumer application sends a PATCH
request, where the PATCHTYPE header property is set to merge.

Returning resource properties in HTTP response headers

Tivoli's process automation engine implementation of OSLC includes a new HTTP
header property, called properties, that supports the return of resource attribute
values in HTTP responses. A consumer application can set the propeties header
and include a comma-separated string of properties in a POST, PUT, or PATCH
request. The HTTP response includes th requested attribute values in the HTTP
response. The properties header can be used, for example, to receive the number of
a work order in the HTTP response to the POST request that created the work
order.

Avoiding duplicate transactions following connection failures

Tivoli's process automation engine implementation of OSLC includes a new HTTP
header property, called transactionid, that a consumer application can use to assign
a unique ID to each transaction. The provider application stores the transaction IDs
in the OSLC transaction table. Following a network connection failure, if the
consumer application resends a POST or PATCH request, the server validates the
transaction ID against the values in the transaction table. If the transaction ID
already exists, the server returns a transaction conflict error in the HTTP response.

HTTP response codes
OSLC uses standard HTTP response codes. For example, the HTTP 404 response is
normally returned when a web page is not found, and in OSLC the 404 response
code is returned when the resource cannot be found.

Some existing error codes are mapped to HTTP codes by default. An implementor
can map additional response codes if required.

The following HTTP response codes are implemented by OSLC:

HTTP code OSLC explanation

200 Success

201 Success. The response contains a link.

204 Resource successfully updated. There is no response entity.

400 Error handling request. This error might be due to the request content
or URI. For example, there might be a business logic validation error on
the server side.

401 Authentication failure.

Integrating data with external applications 277

HTTP code OSLC explanation

403 Forbidden. The user password expired.

404 Resource cannot be found or an invalid resource type was provided.

405 HTTP method cannot be used for the resource.

406 Requested representation is not supported.

410 Stable resource page expired.

412 Resource on the client side is stale and must be refreshed from the
server. The conditional update failed because the resource was updated
by another user or process.

500 All other server errors.

The messages support the languages that are supported by Tivoli's process
automation engine.

Integrating as an OSLC consumer
Your application, an OSLC consumer, can be configured to support three
interaction types; selection dialog, creation dialog, and query. The resource links
are obtained by the consumer application from the provider application.

The following figure illustrates the interactions between the consumer and
provider applications. As an OSLC consumer, the application can query or create
resources in the provider application and retain the links to those resources. With
the links, the consumer application can make requests to the provider application
to query, update, or delete the resources.

Resource links

OSLC consumer
application
(for example, SmartCloud
Control Desk)

Selection dialog interaction

Resource data

OSLC provider
application
(for example, Rational Team
Concert)

Creation dialog interaction

Preview dialog

Query interaction

Resource link returned

Consumer application updates or deletes
a resource using the resource link

Creation of OSLC provider records
You must create a provider record in the OSLC Providers application for each
product that you register in the Registry Services Resource Registry. You can use
the provider record to create interactions that enable users to share and update
data between products.

278 Integrating Data With External Applications

Registry Services:

Registry Services is a Jazz™ for Service Management integration service that
provides the mechanisms through which Open Services for Lifecycle Collaboration
(OSLC) services, resources, and consumers can use the OSLC interface to work in
an integrated service management environment.

Registry Services uses the provider registry to track the capabilities that are
available in the environment and uses the resource registry to track the resources
that can be managed for the environments. It tracks the resources that can be
managed for the environments by using the resource registry. Tivoli's process
automation engine uses the provider registry and the resource registry to integrate
multiple products.

Provider registry

The provider registry is a Registry Services directory that contains services that are
provided by multiple products across different domains. The provider registry
tracks all the service providers in an environment, provides information about how
to contact them, and lists the type of action they perform.

As an OSLC consumer, when you create a selection window, a creation window, or
a query interaction, you can configure the interaction to discover service providers
in the provider registry.

The OSLC provider currently offers no support for registering the application's
service providers to the provider registry.

Resource registry

The resource registry is a Registry Services directory that contains resources that
are managed or tracked by multiple products across different domains.

As an OSLC consumer, you can use the resource registry to query resources. When
you create a query interaction, you can configure the public URI of the provider
record to point to the resource registry, and you can also configure the default
PROVIDERREGISTRY end point.

The OSLC provider currently offers no support for registering the application's
resources to the resource registry.

Service providers:

A service provider is a container or collection of related data, such as a project, a
user database, or a module. Service providers support the grouping of similar
resources, such as defects or tasks, that can be configured for integration.

A service provider in an OSLC provider application contains the resource data that
can be linked to consumer application data through integration of the applications.
To integrate a consumer application and a provider application, the consumer must
discover or identify the service providers that are available in the provider
application.

The OSLC Providers application supports the following ways of discovery of
service providers:
v Catalog list

Integrating data with external applications 279

v Single service provider
v Provider registry

To use the catalog list or the single service provider for discovery, in the OSLC
Providers application, you specify a URI in the Service Provider List URI field.
The URI can link to a service provider catalog, a service provider listing, or an
individual service provider.

To use the provider registry for discovery, in the OSLC Providers application, you
select the Use Provider Registry check box. In the End Points application, a
predefined HTTP endpoint that is named PROVIDERREGISTRY is used to identify
the connection information to the provider registry.

The PROVIDERREGISTRY endpoint specifies a provider registry where OSLC
provider applications can register service provider data. The endpoint requires
some configuration before it can be used. The HTTP endpoint for the provider
registry is distinct from the OAuth or HTTP endpoints that are used during the
running of interactions between integrated applications.

Resource types and shape documents:

A resource type identifies the type of data, such as a change request, that is linked
between integrated applications. A resource type can have an associated shape
document. A shape document is similar to an XML schema in the way that it
defines the data structure of the resource.

In the OSLC Providers application, you use the Add/Modify Resource Types
action to create resource types. You create a resource type for each type of data
that at least one provider supports, and that you want to link to. The provider
application must support the resource type through a service provider for the
resource type to be available for an OSLC interaction.

A resource type can be used with multiple interactions for a provider. Resource
types are available to use with multiple OSLC providers that support the same
resource type.

Resource data from the provider application can be made available to the
consumer application as usages. A usage is a subclass of the resource data. For
example, a resource type of change request might have usages of defect and task.

A shape document is a Resource Description Framework (RDF) file that provides a
description of the resource data types that can be used in an interaction. When you
create a resource type, you can import a shape document for the resource type.
The shape document contains a list of attributes of the resource type.

Endpoints in OSLC integration:

An endpoint is the entry point to a service, a process, an application, or a topic
destination. Two types of endpoints can be used in OSLC integration. An
integration endpoint is used for OSLC integration between a consumer application
and a provider application. It specifies how a consumer application communicates
with the OSLC provider application. The integration endpoint can be an OAuth
endpoint or an HTTP endpoint. A provider registry endpoint is used only if the
method specified for service provider discovery is through the Provider Registry.

280 Integrating Data With External Applications

Integration endpoints

When you create an OSLC provider record, you must specify the endpoint for the
provider application. The endpoint is used for all interactions between the
consumer application and the provider application. OSLC integration with some
providers, such as Rational Team Concert™, must use an endpoint with a handler
type of OAuth. Other providers might require an HTTP endpoint, or support either
an HTTP endpoint or an OAuth endpoint.

OAuth is an open standard for authorization between sites or applications. OAuth
enables the sharing of resources that are stored on one site with another site
without having to provide complete authentication credentials. Additional
information about OAuth is readily available on the web.

You create the endpoint definition in the End Points application. The endpoint
specifies the attribute values from the provider application that enable the
integration and data linking.

Important: Use only English-language characters and numerals in an OAuth
endpoint name.

The values of the OAuth endpoint properties are based on the configuration of the
provider application.

Table 40. Properties of OAuth endpoints

Property Description

ACCESSTOKENURL You get the access token URL from the
OSLC provider application. This value is
required.

AUTHORIZATIONURL You get the authorization token URL from
the OSLC provider application. This value is
required.

CONSUMERKEY The OAuth key that is to be used by the
consumer application, from the OSLC
provider application. This value is required.

CONSUMERSECRET The OAuth secret or password that is to be
used by the consumer application, from the
OSLC provider application. This value is
stored in an encrypted format. It is required.

COOKIES The cookies to pass through to the endpoint.

HEADERS The header properties to pass through to the
endpoint. For example, the language code of
the consumer side of the integration might
be included in the header properties.

HTTPMETHOD The HTTP method that is used during the
request. The default value is GET. This value
is required. Ensure that Allow Override is
selected for the HTTPMETHOD property.

REQUESTTOKENURL The URL of the OAuth security provider.
You get this value from the OSLC provider
application. This value is required.

URL The URL of the service provider usage type.
This value is required. Ensure that Allow
Override is selected for the URL property.

Integrating data with external applications 281

Provider registry endpoint

You can specify that your product does discovery of service providers in the OSLC
provider through the Provider Registry. In this case, you use a predefined HTTP
endpoint for discovery, in addition to the OAuth or HTTP endpoint that is used
for integration. The name of the endpoint, PROVIDERREGISTRY, is registered in
the mxe.oslc.prqueryep system property.

The IBM open service delivery platform (OSDP) has a version of their Provider
Registry that is available under the Transparent Development program. For more
information about the registry and to download the current version, see
https://www.ibm.com/developerworks/servicemanagement/iosdp/index.html.
When implemented, this registry could be configured as the PROVIDERREGISTRY
endpoint.

The PROVIDERREGISTRY endpoint is predefined in the End Points application,
but not all properties are configured. You must fully configure the endpoint to
support service provider discovery through the Provider Registry.

Table 41. Properties of the PROVIDERREGISTRY HTTP endpoint

Property Description

CONNECTTIMEOUT The amount of time, in seconds, to wait for
the connection before giving a timeout error.

COOKIES The cookies to pass through to the endpoint.

HEADERS The header properties to pass through to the
endpoint. For example, the language code of
the consumer side of the integration might
be included in the header properties.

HTTPEXIT The Java exit class that is provided to
support processing that is specific to the
Provider Registry.

HTTPMETHOD The HTTP method that is used during the
request. The default value is GET. This value
is required. Ensure that Allow Override is
selected for the HTTPMETHOD property.

PASSWORD If the registry is secured, the password for
the corresponding user name is required.

READTIMEOUT The amount of time, in seconds, to wait for
a response to a request made by the
consumer application before giving a
timeout error.

URL The URL of the Provider Registry. Required.
The default value is https://oslc-registry/
oslc/pr. The value must be updated to
reflect the local implementation of the
registry. Ensure that Allow Override is
selected for the URL property.

USERNAME If the registry is secured, the user name and
the corresponding password are required.

When you configure the PROVIDERREGISTRY endpoint definition, you must
specify values for at least these two properties:
v HTTPMETHOD: Configured to GET.

282 Integrating Data With External Applications

v URL: Has a default value. Update the value to reflect the local implementation
of the registry.

You also might need to configure the USER and PASSWORD values, depending on
the security configuration of the Provider Registry.

Single sign-on

If you plan to use single sign-on, you must set the COOKIES property for your
HTTP endpoint to LtpaToken2.

Designing an OSLC interaction
OSLC integration establishes links between the data in one of your user
applications and the data in an external OSLC provider application. You use the
OSLC Providers application to integrate applications by designing OSLC
interactions.

The OSLC Providers application supports the creation of OSLC interactions that
are generated from the user interface. You can design the following three types of
interactions that let your users link their application data to provider resource data:
v A creation interaction lets the user create resource data in the OSLC provider

application and link that resource data to an application record.
v A selection interaction lets the user select existing resource data in the OSLC

provider application and link that resource data to an application record.
v A query interaction lets the user select a pre-defined query in the OSLC provider

application and retrieve resource data.

The following records must be in place before you can design an interaction:
v An OAuth or HTTP integration endpoint record for the provider application

must exist in the End Points application.
v A record for the OSLC provider application must be defined in the OSLC

Providers application.
v One or more provider resource types must be available. You add resource types

on the Add/Modify Resource Types window in the OSLC Providers application.

The Create OSLC Interaction wizard in the OSLC Providers application takes you
through three steps to design an OSLC selection interaction. The wizard adds an
extra step for an OSLC creation interaction and two extra steps for an OSLC query
interaction.

Example: Designing an OSLC creation or selection interaction:

You want to design an OSLC interaction so that users of the Service Requests
application can create a defect in Rational Team Concert, the provider application.
The defect that is created is linked to a service request in the Service Requests
application.

Preparatory work

In the OSLC Providers application, you create a provider record for Rational Team
Concert. You specify the OAuth endpoint and the public URI for Rational Team
Concert, and you specify how the service provider is identified.

Integrating data with external applications 283

By using the Add/Modify Resource Types action, you add the resource type or
types that are supported in Rational Team Concert and specify that users can link
from the Service Requests application.

Define interaction and select usage URI: step 1

You select the Create OSLC Interaction action.

You specify Create Defect as the name of the OSLC interaction for the Rational
Team Concert record. You select CREATIONDIALOG as the interaction type.

You select a resource type, such as change request, from the value list. The list is
populated with the resource type or types that you created earlier.

The Rational Team Concert login page is displayed because you must log in to
Rational Team Concert to continue.

After you log in, the Usage URI value list is populated from Rational Team
Concert with the resource usage types for the selected resource type. You select the
defect usage type. You can optionally specify a usage URI.

Select service provider and association property: step 2

In step 2, you specify whether all Rational Team Concert service providers are
available for the interaction, or whether only a single service provider is available.
You can also identify an association property, so that a link can be established from
the provider application, Rational Team Concert, to the consumer application,
Service Requests.

You use the default selection, which is that all service providers are available.
When a user of the Service Requests application initiates the interaction in the
Service Requests application and multiple service providers support the selected
resource and usage combination, a selection window opens. For example, the
selection window can show a list of Rational Team Concert projects that support
defects. The user can select the service provider or container in which to create the
defect.

The other option is to specify an individual service provider URI. In that case, the
Service Requests application connects directly to the service provider that you
specify.

To enable a link from Rational Team Concert to the Service Requests application,
you must specify the association property. The association property is tied to the
Rational Team Concert resource. If a shape document is associated with the
resource type, values that you can choose for the association property come from
the shape document. If no shape document is associated with the resource type,
you can specify an association property. The association property is displayed in
the Rational Team Concert user interface, and the property is populated with a link
to the service request. A Rational Team Concert user can click the link to open the
Service Requests application and view the related service request in Rational Team
Concert.

284 Integrating Data With External Applications

Select consumer application for OSLC interaction: step 3

In step 3, you specify the consumer application that will interact with the provider
application, Rational Team Concert. The consumer application is the Service
Request application.

The default setting is that user interface changes in the consumer application are
generated automatically by the wizard. If you maintain the default setting, you
must specify the application tab to which the interaction table and button are
added.

You specify that the tab, table window, and button are to be added to the Related
Records tab of the Service Requests application. By default, the push-button name
is the name that you specified for the interaction: Create Defect. You can change
the button name.

For the button to be visible to users, you must specify the security groups that are
authorized to run the interaction. Only users in the groups that you authorize can
see the button and create a defect in Rational Team Concert.

Alternatively, you can clear the Create Interaction Tab check box and use the
Application Designer to create all user interface changes in the Service Requests
application.

Specify interaction field mappings: step 4

Step 4 is available for creation interactions only. You can optionally map data from
the consumer application to target fields in the provider application. When the
user clicks the button to create a resource, the fields are mapped to the provider
window that is displayed in the consumer application. For example, you want
Service Requests users to see the service request number and description that is
prefilled in fields on the Rational Team Concert Create Resource window. You can
provide more field mappings, or revise the field mapping, even after you complete
the interaction.

The shape document for the resource identifies attributes that support links. From
your application, select only fields that contain links to map to target fields that
support links. Ensure that the target field is a field that is visible in the user
interface of the provider application window so that the mapped data is visible.

You want to map the service request description to the defect description in the
Rational Team Concert window. You specify :description as the source mapping
expression, and description as the target resource property.

Create multiple interactions

You can create multiple interactions for a consumer application. For example, you
might also want to create a selection interaction for the Service Requests
application. In the selection window, a user can click a button to select an existing
resource, such as a defect, in Rational Team Concert. If you create multiple
interactions for the same resource type and usage combination in the same
application tab, the push buttons are added to the same tab and table window.

If you also design a selection interaction for the Service Requests application, users
have the following options:
v Create a defect, and link the service request to the new defect.

Integrating data with external applications 285

v Select an existing defect, and link the service request to that.

You also might design an additional creation interaction for a supported resource
type or usage type, such as task. A different resource type and usage combination
generates a separate tab and table window for the additional interaction button.

Review new interactions in the consumer application

After you complete the interaction, you must log in again. The new login grants
the updated security access that you specified in step 3. After you log in, you
navigate to the Service Requests application to review the user interface changes.
At any time, you can use the Application Designer application to refine or add to
the user interface changes that were auto-generated in the Service Requests
application.

You can test the button or buttons to ensure that the Rational Team Concert
window is shown in the Service Request application as expected. If the window is
not shown, or data is in unexpected fields, faulty data mapping might be the
cause. You can review and revise data mapping for the interaction in the Mapping
table of the OSLC provider record.

If users of the Service Request application cannot see the newly added buttons that
link to Rational Team Concert, ensure that the users have logged in again and that
they belong to the security groups that you authorized. Also ensure that the users
have valid Rational Team Concert login credentials.

Modification of OSLC creation or selection interactions

After you complete the design of the OSLC interaction, the changes that you can
make to it are limited. You can update the association property, and you can revise
the field mapping.

Specifying a new association property establishes a new property name that
provides a link from the provider application to the consumer application.

In the Interaction Mappings table, you can revise any existing mapping, delete
mapping, or add mapping. The shape document for the resource identifies
attributes that support links. From the consumer application, you select only the
fields that contain links to map to target fields that support links. Ensure that the
target field is one that is visible on the user interface of the provider application
window, so that the mapped data is visible.

You also can specify a Java class to use as part of the mapping logic. You can use a
Java class when the field mapping definitions that you provide are not sufficient.
Specify the Java class in the Interaction Mapping Class field. A mapping class can
be provided whether field mapping exists or not.

Deletion of OSLC creation and selection interactions

Deletion of the interaction is possible only if there are no existing links within the
consumer application that reference the interaction. All related application links
must be deleted before an interaction can be deleted from an OSLC provider
record.

When you delete an interaction, the corresponding user interface changes that were
made when the interaction was designed are updated. The button for the

286 Integrating Data With External Applications

interaction is removed from the application. The table window and tab are also
removed, but only if the wizard-created tab and table window where the button
existed does not contain buttons for other interactions. The relationship and
signature option that were created for the interaction are also deleted.

If you manually configured the user interface changes for the interaction, you must
use the Application Designer to remove those changes.

Orphan links

Links that are generated between the object record for the consumer application
and the provider application resource are stored in the OSLCLINK database table.

If you delete an object record that has links, the OSLCLINK table then contains one
or more orphan links that are associated with the deleted object record.

The OSLCDeleteLinks cron task deletes orphan links. By default, the
OSLCDeleteLinks cron task is set to run once a day. You can view and edit the
cron task in the Cron Task Setup application

Example: Designing an OSLC query interaction:

You want to design an OSLC interaction so that users of the Assets application can
run a query and retrieve resource data from a provider, such as IBM Tivoli
Application Dependency Discovery Manager.

Preparatory work

In the OSLC Providers application, Resource Registry is the default provider for
query interactions. The PROVIDERREGISTRY endpoint is specified as part of the
default settings, but you must configure the end-point properties and specify the
public URI for Resource Registry. You must also specify how the service provider
is identified.

By using the Add/Modify Resource Types action, you add the resource type or
types that are supported in Resource Registry and associate a shape document
with the resource type if available. You can also specify that users can link to the
Resource Registry from the Assets application.

Define interaction and select usage URI: step 1

You select the Create OSLC Interaction action.

You specify COMPUTER as the name of the OSLC interaction and select
QUERYCAPABILITY as the interaction type.

You select a resource type, such as COMPUTERSY, from the value list. The list is
populated with the resource type or types that you created earlier.

You can optionally specify a usage URI. The Usage URI value list is populated
from the Resource Registry with the resource usage type or types for the selected
resource type. If you do not specify a usage URI, the default usage type for the
resource type is used.

Integrating data with external applications 287

Select service provider and link property: step 2

In step 2, you specify whether all service providers are available for the interaction,
or whether only a single service provider is available. You can also identify a link
property and a link label, so that a link can be established from the provider
application, Resource Registry, to the consumer application, Assets.

You use the default selection, which is that only the Resource Registry service
provider is available. When a user of the Assets application initiates the interaction
by running a query and multiple service providers support the selected resource
and usage combination, a selection window opens. For example, the selection
window can show a list of service providers that contain data that is on the
specified resource. The user can select the service provider on which to base the
query.

The other option is to specify an individual service provider URI. The query is run
based on the service provider that you specify. The link property is used to retrieve
the resource data from the Resource Registry for the provider. The link and the
link label are displayed to the user in the consumer application when the query
results are provided.

To enable a link from Resource Registry to the Assets application, the provider
application must support the use of a link property. The link property is tied to the
resource in the Resource Registry. If a shape document is associated with the
resource type, values that you can choose for the link property come from the
shape document. If no shape document is associated with the resource type, you
can specify a link property and link label.

Select consumer application for OSLC interaction: step 3

In step 3, you specify the product application that interacts with the provider
application, Resource Registry. The consumer application can be any application in
the product, but this example uses the Assets application.

The default setting is that the push button is generated automatically in the
application that is specified. If you maintain the default setting, you must specify
the application tab to which the interaction button is added to support the query
interaction.

You specify that the button is to be added to the Main tab of the Assets
application. By default, the push-button label is the same as the name that you
specified for the interaction: Computer. You can change the button label.

For the button to be visible to users, you must specify the security groups that are
authorized to run the interaction. Only users in the groups that you authorize can
see the button and run the query to retrieve the resource data.

Specify queries and query parameters: step 4

In step 4, you build the queries for the interaction. The queries are used to query
the resource data in the Resource Registry. The Select clause identifies the
attributes that are selected from the resource. You can specify an asterisk (*) to
retrieve all values or specify a comma-separated list of resource attributes from the
shape document to filter the list of values to be retrieved.

288 Integrating Data With External Applications

You can define the WHERE condition of the query by using one of the following
methods:
v Implement a Java class to define the WHERE condition.
v Populate the WHERE condition.
v Configure the WHERE condition by using the parameter values. The parameter

values are selected from the main object of the application and compared against
the attributes of the resource data in the provider application.

The queries are run in the order that is specified in the queries table. If the first
condition is not met, all subsequent queries are processed in sequence until a
query condition is met. When a condition is met, the resource data is retrieved and
returned to the user in the consumer application. You can also identify the orderby
query parameter that orders the data returned in the response of the query.

Queries that are created during the design of the interaction are not validated.
Therefore, you might create queries that generate messages during run time. For
example, you might create the following query condition:
Query Query Type Property Operand Mapped Expression Is Literal?
10 Parameter http://open-services.net/ns/crtv#%7Dmanufacturer IN IBM, Dell Checked

But during run time, an error is generated because the query is searching for one
attribute "IBM, Dell" rather than two attributes "IBM","Dell". The following
example shows the correct attribute format:
Query Query Type Property Operand Mapped Expression Is Literal?
10 Parameter http://open-services.net/ns/crtv#%7Dmanufacturer IN "IBM","Dell" Checked

Specify the interaction group: step 5

In step 5, you can optionally add the query interaction to an interaction group and
specify a condition for the group if one does not exist.

An interaction group allows you to group multiple related queries together under
a single user interface control. By specifying an interaction group, you allow the
user to execute multiple interactions to different providers based on the condition
that is associated with the interaction within the group.

All the interactions in the group are based on the same main object and resource
type. If you add a query interaction to an interaction group, that interaction is only
run as part of the group. The query interaction is not run independently. The order
of interactions in the group determines the sequence in which the query for the
interaction group is run.

You specify the CICOMPUTERSY interaction group and the XYZ condition. If you
created an interaction group, you can specify extra details for the interaction group
by using the Add/Modify Interaction Groups action. In the Assets application,
when the user clicks the button to run a query and a condition is met, the query
results are displayed in the Preview window.

Review new interactions in the consumer application

After you create the query interaction, you must log in again. The new login grants
the updated security access that you specified in step 3. After you log in, you can
navigate to the Assets application to review the user interface changes.

You can test the button to ensure that it is shown in the Assets application as
expected. You can run the query to verify that the query is valid and that resource

Integrating data with external applications 289

data is returned. If no results are returned, the query parameters might be
incorrect. Review the query parameters in the OSLC Providers application and
update them as needed.

If users cannot see the newly added button after they log in again, ensure that the
users belong to the security groups that you authorized.

Modification of OSLC query interactions

After you complete the design of the OSLC query interaction, the changes that you
can make to it are limited. You can update the link property, update the query
parameters, and you can revise the field mapping.

Specifying a new link property establishes a new property name that provides a
link from the provider application to the consumer application.

In the Query Mappings table, you can revise any existing mapping, delete
mapping, or add mapping. The shape document for the resource identifies
attributes that support links. From the consumer application, you select only the
fields that contain links to map to target fields that support links. Ensure that the
target field is one that is visible on the user interface of the provider application
window so that the mapped data is visible.

You also can specify a Java class to use as part of the mapping logic. You can use a
Java class when the field mapping definitions that you provide are not sufficient.
Specify the Java class in the Query Mapping Class field. A mapping class can be
provided whether field mapping exists or not.

The SELECT clause of the query interaction can be updated after the interaction is
created.

Deletion of OSLC query interactions

Deletion of the query interaction is possible only if the interaction is not tied to an
interaction group. You must remove the interaction from a group before you delete
the interaction.

When you delete an interaction, the corresponding user interface changes that were
made when the interaction was designed are updated. The button for the
interaction is removed from the application. The relationship and signature option
that were created for the interaction are also deleted.

Creating interaction groups
You can use interaction groups to collate multiple query interactions under a single
user interface control, such as a button. These query interactions can be for a single
provider or multiple providers.

Before you begin

Before you can create an interaction group, you must create one or more query
interactions.

About this task

Each query interaction in the group is executed and returns data to the user based
on its conditions. If a query interaction contains a condition that is based on the

290 Integrating Data With External Applications

current application data, the interaction group uses that data to execute only the
appropriate queries. The query results from multiple queries are combined and
displayed in the resulting view.

To create an OSLC interaction, you must be in the base language. You can also
create an interaction group in the query interaction wizard.

Procedure
1. In the OSLC Providers application, select the Add/Modify Interaction Groups

action.
2. Add a new row, and specify a name for the interaction group and the main

object that you want to associate with the group.
3. Optional: If you want to associate the interaction group with multiple

providers, select the Support the Combined View of Multiple Providers check
box.

4. On the Interactions tab, specify at least one interaction to be run as part of the
group. The interactions that are available for selection are based on the main
object that is specified for the interaction groups.

5. On the Applications tab, specify the application to which you want to add the
interaction group.

6. Optional: If the main object for the interaction group is not a main object for
the application that is specified, you must specify a relationship. If a
relationship does not exist between the application and the main object that
you specified for the interaction group, you must create or modify a
relationship on the Relationships tab in the Database Configuration
application.

7. Specify a label for a button, a Detail Menu item, or both depending on where
you want the interaction to be available from in the consumer application.

8. On the Security Groups tab, select the security group that applies to the
application and interaction group.

9. To add an interaction group to a Detail Menu item, select the Application
Menu tab, specify the location in the consumer application where the group is
to be added, click OK, and save the group. The existing fields in the consumer
application are shown in the Select Detail Menu dialog box.

Example: Running an OSLC interaction
As an application user, you can run OSLC interactions between applications that
an integration designer integrated. You start theOSLC interaction by clicking a
button in the consumer application. Depending on the type of interaction, you can
create a resource record in the external provider application or link to an existing
resource in the provider application.

In this example, your application is the consumer and Rational Team Concert is the
provider. However, this process can also work with anyOSLC provider.

You use the Service Requests application to enter requests for fixes to the software
that your team is developing. Your integration designer used the OSLC Providers
application to integrate the Service Requests application with the Rational Team
Concert application. Two OSLC interactions were created. In the Service Requests
application, there is now a tab that is labeled Defects in the Related Records tab.
The tab has a Defects window and two push buttons in the window: Create Defect
and Select Defect.

Integrating data with external applications 291

You can now enter a service request and create an associated defect in Rational
Team Concert at the same time, without leaving the Service Requests application.
Or you can associate the request with an existing resource in Rational Team
Concert, by using the Select Defect button.

Creating a defect

In the Service Requests application, you create a service request, provide a
description and other information, and save the request. You open the Related
Records tab, and click the Create Defect button on the Defects tab.

Because you are creating a resource record in an external application, Rational
Team Concert, you must sign in to Rational Team Concert. The Rational Team
Concert login window is displayed. After you provide your user ID and password,
the Create Resource window is displayed. The Create Resource window is a
Rational Team Concert window, now available to you in the Service Requests
application as a result of the OSLC integration.

You specify the type of resource to create, a defect. You also must provide
information in the Summary field, and specify the project or container to file the
defect against.

Your integration designer mapped the Service Request Description field to the
Rational Team Concert Description property when the interaction was created. As a
result, your service request description is in the Description field on the Create
Resource window. You can edit the description if necessary.

Previewing provider application resource record data

Creation of the record in Rational Team Concert also creates a row in the Defects
table in the Service Requests application. The Description field contains
information about the linked resource in Rational Team Concert. The table row also
shows the URL of the linked resource record.

The Description field has an information icon, a small blue circle with an “i” in it.
You can hover the cursor over the information icon to display a window that
shows data from the defect record in Rational Team Concert. (If you are not signed
in to the provider application, hovering over the information icon displays a
message and a link to sign in.If the provider application does not support OSLC
previews, a second icon appears and you can click on this icon to see a preview.)

You can use the preview window to check the status and other information about
the Rational Team Concert defect record from within the Service Requests
application.

Selecting a defect

In the Service Requests application, you enter a second service request. The request
is to fix an instance of a problem that was previously reported, and for which a
defect exists in Rational Team Concert. For the second request, you want to link to
the existing defect, rather than create a defect record. On the Defects table on the
Related Records tab, you click Select Defect.

You might need to select the container, such as the Rational Team Concert project,
for the defect, if the provider application supports multiple containers.

292 Integrating Data With External Applications

On the Select Resource window, you specify Defect as the type of resource that
you want to select. Provide search information, such as the defect number or
description, to display the defect or defects that match your search criteria. When
you select a defect and click OK, the link to the Rational Team Concert defect
resource is established. A row for the defect is added to the Defects table in the
Service Requests application. You can use the information icon to display defect
information, just as you can for the row that you added by creating a defect.

Public URI changes
If an OSLC provider application is moved to another server or its public URI
changes for another reason, you can change the public URI on the OSLC provider
record. When you update the public URI, URIs that are based on the public URI
also change, which prevents links from breaking.

In the OSLC Providers application, you use the Change Public URI action to
specify the new public URI for an OSLC provider. After you change the public
URI, URIs that are based on the public URI, such as service provider URIs and
resource URIs, are also changed. Updating the links to match the new public URI
maintains the links as active, viable links.

Migration of OSLC integrations
You can migrate an OSLC provider definition and its related interactions from one
instance of your product to another. For example, you might set up an OSLC
integration in a development or test environment. After you establish that the
integration is working properly, you can migrate it to a production environment.

Migration of OSLC integrations takes advantage of existing Migration Manager
application features and is largely done in the Migration Manager application. The
OSLC Providers application has an action to generate the package that is to be
migrated.

Before you run the Migrate OSLC Provider action, you do preparatory work in the
Migration Manager application. An OSLCPROVIDER package definition is
provided in the Migration Manager application. For the OSLCPROVIDER package
definition, you specify a target database or file destination for the package that you
generate in the OSLC Providers application.

You use the Migrate OSLC Provider action in the OSLC Providers application to
generate the package that you then manage in the Migration Manager application.
The package contains the OSLC provider record, the associated interactions, and
the associated user interface changes in the integrated consumer application or
applications.

After you run the Migrate OSLC Provider action, a system message is displayed.
The final line of the log message shows the name of the package. The package is
listed on the Package tab of the OSLCPROVIDER package definition in the
Migration Manager application in the source environment.

In the target environment, you use the Migration Manager application to import
and deploy the package.

If you use a custom Java mapping file in your OSLC integration, the custom Java
mapping file does not get included in the package. You must manually move the
custom mapping file and the corresponding class file to the target environment, or
manually add them to the package.

Integrating data with external applications 293

The Migrate OSLC Provider action generates a package for the current OSLC
provider record only. If you have multiple OSLC provider records, you must
migrate each one individually.

The Migration Manager does not support the migration of interaction groups. To
migrate the objects in an interaction group, you can build a new object structure
that uses the following objects:
OSLCINTGROUP
OSLCGRPAPPS
OSLCGRPAPPMENU
OSLCGRPMEMBERS

You must include the new object structure in the OSLCPROVIDER migration
package.

Manual UI modification
Designing OSLC interactions between applications requires multiple user interface
(UI) changes in the consumer application. Several scenarios might lead you to use
the Application Designer application to make or refine UI changes as part of the
integration.

Manual implementation of UI changes and security for interactions:

If you choose to not have the wizard auto-generate user interface (UI) changes in
the consumer application, you must modify the UI yourself. The user interface
must make the interaction available to users through a push button. If you do not
select security groups in the wizard, you must specify the security groups that
have access to the interaction.

Even when you do not auto-generate user interface changes, creation of an OSLC
interaction creates a link relationship and a push-button signature option. The link
relationship name is based on the specified resource type or usage. The signature
option name is based on the interaction name. The relationship name and the
signature option name are listed in the interaction details on the OSLC Provider
tab. You need these two values when you manually implement UI changes.

Use the Application Designer application to modify the user interface of the
consumer application. You must create a push button so that the OSLC interaction
can be executed to create a link. And you must provide a tab with a table to hold
the links to resources in the provider application. Typically, you provide the button
and the link table together on the same tab.

Use the Security Groups application to specify the groups that have access to the
push button. Only users in the groups that you authorize can see the button and
use it to display the provider application window and run the interaction.

User interface refinements:

You might want to make refinements or additions to the consumer application user
interface (UI) even when the UI changes are auto-generated.

After you design an OSLC interaction that auto-generates the user interface
changes, your review of the application UI might reveal that revisions are
warranted. For example, you might want to edit the labels on the new tab, table
window, or push button. Or you might want to adjust the positioning of UI
elements. Use the Application Designer application to modify or add UI elements.

294 Integrating Data With External Applications

During interaction design, you can specify that all service providers are to be
available for the interaction in the consumer application. In these cases, a Select
Container window is displayed when the interaction is initiated. The window is
used to specify which service provider or container to use for the interaction. You
might want to provide help grid text for the Select Container window. For
example, you might add help grid text to indicate that the choices represent
projects, or databases, or some other resource container. You also might relabel the
window title to add clarity to what the user is to select.

Translation of untranslated UI elements:

You use the Application Designer application to modify and translate some user
interface (UI) elements, such as tooltips for icons, that are added by the interaction
design.

Some user interface elements that are added by the design of an OSLC interaction
do not appear in the language appropriate for the interface, because interactions
must be created in the base language. The elements are added after the original UI
elements were translated, before deployment of the application. To translate the UI
elements into the language of the application UI, use the Application Designer
application to modify the untranslated text elements.

OSLC properties
You can use system properties to help manage Open Services for Lifecycle
Collaboration (OSLC) application integration.

Table 42. OSLC properties

Property Description Default value

mxe.oslc.collectioncount Represents the total count of the OSLC collection. 0

mxe.oslc.defaultep Represents the default OSLC endpoint. OSLCDEFAULT

mxe.oslc.defaultformat Represents the default format for OSLC. oslcjson

mxe.oslc.dfltconsumerversion Represents the default OSLC version that the
consumer uses.

2.0

mxe.oslc.dfltversion Represents the default OSLC version for an OSLC
provider.

2.0

mxe.oslc.enableprovider Enables the OSLC provider. 1

mxe.oslc.idleexpiry Represents the time in seconds that the system can
be idle before the sessions expires.

300

mxe.oslc.prcreateep Represents the Provider Registry Create Endpoint.

mxe.oslc.preferproviderdesc Specifies whether the OSLC Provider description is
preferred for resource registry reconciled URIs.

true

mxe.oslc.prettyjson Represents the pretty print JSON. 1

mxe.oslc.prettyrdf Represents the pretty print RDF. 1

mxe.oslc.prqueryep Represents the Provider Registry Query Endpoint. PROVIDERREGISTRY

mxe.oslc.webappurl Represents the Provider Public URI. http://localhost/maximo/oslc/

Integration queries
The integration framework supports queries from external systems. The external
system sends an XML message to query the integration framework and the
integration framework returns an XML message as a response to the query. You
can execute a query for object structure and enterprise services by using HTTP,
Java™ Remote Method Invocation (RMI), or a Simple Object Access Protocol
(SOAP) request in a web service.

Integrating data with external applications 295

Support for XML queries is based on the system Query By Example (QBE)
capability that is available from the List tab of most applications. XML-based
queries provide the same query support that is provided in the applications except
for attribute searches that are available in some system applications. Integration
query time outs are controlled by the mxe.db.Query.Timeout system property.
Related concepts:
“REST API” on page 226
The Representational State Transfer (REST) application programming interface
(API) provides a way for external applications to query and update application
data in Tivoli's process automation engine.

Query services
Object structure services and enterprise services support query operations. An
external source can use a service to run a query and to retrieve data from a system.
In both cases, the object structure schema defines the XML content for the query
request and the query response.

For an object structure that has more than two levels of business objects, the query
framework supports the use of business object attributes in the top two levels of
the request XML. The query response XML contains all the objects in the object
structure.

All system-provided object structures with a Consumed By value of
INTEGRATION, support the query operation by default. You can configure an
object structure to support the query operation only and no other operations that
support updating objects. You can use the Object Structures application to create
additional object structures which provide support for the query operation.

Creating an enterprise service query
An external source can use an enterprise service to run a query and to retrieve
data from a system.

About this task

A sample enterprise service query, MXINVBALQInterface, is provided. You can use
this sample as a reference when you create query enterprise services.

Procedure
1. If one does not exist, create an object structure containing the objects that the

query needs to access.
2. Define an enterprise service that implements the object structure you intend to

use for the query.
3. Specify Query as the operation on the enterprise service.
4. Associate the enterprise service with an external system, and enable the

external system and its enterprise service.

Web service queries
Query services that are created in the Enterprise Services application and the
Object Structures applications can be deployed as web services. To support
querying, you must configure enterprise web services to bypass the JMS queues.

296 Integrating Data With External Applications

A successful response to a query that is run in a web service returns the query
result set. If the result set is empty (it contains no records), the XML that is
returned in the SOAP body contains the following empty MXPERSONSet tag:
<max:QueryMXPERSONResponse xmlns:max="http://www.ibm.com/maximo"

creationDateTime="2011-04-28T21:49:45"
baseLanguage="EN" transLanguage="EN" messageID="12345"
maximoVersion="7.5" rsStart="1" rsCount="10" rsTotal="10">
</max:MXPERSONSet>

</max:QueryMXPERSONResponse>

If an error occurs, an HTTP response code of 500 is returned, along with a SOAP
fault detailing the error message.

Use the following URL for the query web service:
http://hostname:port/meaweb/services/web service name

v The host:port/meaweb is the value of the integration web application URL
property.

v The web service name is the name of the web service.

You deploy query enterprise and object structure services as web services using the
Web Services Library application.

Query XML structure
The name of the root element of a query is the concatenation of the operation
(Query) and the name of the associated object structure. For example,
QueryMXPERSON, where MXPERSON is the object structure.

Root element

The name of the root element of a query is the concatenation of the operation and
the name of the object structure, for example, QueryMXPERSON, where
MXPERSON is the object structure. The following table lists the attributes that can
apply specifically to the root element of a query, a response to a query, or both. All
attributes in this table are optional.

Attribute Description Type Applicable to

uniqueResult Specifies whether the query expects
one record or multiple records in a
response.

Value 0 (default): The query can
return multiple records.

Value 1: The query can return a
single record; otherwise, an error
occurs.

Boolean Query

maxItems If the query can return multiple
records, this attribute limits the
number of records to be returned at
one time.

If this attribute is not specified, the
response contains the entire result
set.

PositiveInteger Query

Integrating data with external applications 297

Attribute Description Type Applicable to

rsStart In the query request:

Use with maxItems to specify the
first record to be returned in a
response.

If maxItems equals 10 and rsStart is
not specified, the response returns
results 0 through 9. To receive
results 10 through 19, resend the
query with rsStart equals 10.

If rsStart is not specified, the
response starts with the first record
in the result set. If the number of
records in the query result set is
lower than the value of rsStart, the
response returns no records.

Integer Query

rsStart In the query response:

This value matches the rsStart value
in the corresponding request.

If the corresponding request
contains a maxItems value, the
rsStart value in requests for
additional records is rsStart +
rsCount + 1.

If this attribute is not specified, the
response starts with the first record
in the result set and includes the
number of records specified by the
rsCount attribute.

Integer Response

rsCount The number of records that are
returned in the message.

rsCount does not reflect any rows
that may be skipped as part of the
response processing layer.

Integer Response

rsTotal The total number of records in the
result set.

If the query does not specify a
maxItems value, the rsTotal value is
the same as the rsCount value.

Integer Responses
(output)

For example, the response to this query request returns records 11 through 20 of
the query result set by virtue of setting the rstart value to 11 and the maxItems
value to 10.
<max:QueryMXINVBAL xmlns:max="http://www.ibm.com/maximo"

creationDateTime="2011-049-28T21:49:45"
baseLanguage="EN" transLanguage="EN" messageID="12345"
maximoVersion="7.5" uniqueResult="0" maxItems="10" rsStart="11">
<max:MXINVBALQuery orderby="string" operandMode="OR">

The following query result set contains a total of 35 rows, as noted by rsTotal, but
only rows 11 through 20 are returned.

298 Integrating Data With External Applications

<max:QueryMXINVBALResponse xmlns:max="http://www.ibm.com/maximo"
creationDateTime="2011-04-28T21:49:45"
baseLanguage="EN" transLanguage="EN" messageID="12345"
maximoVersion="7.5" rsStart="11" rsCount="10" rsTotal="35">
<max:MXINVBALSet>

.

.

.
</max:MXINVBALSet>

Query operator

The QueryOperatorType data type supports the use of different operators. Your
query request XML can use the different operators to filter the data that is returned
to the querying external source.

QueryMXPERSON element

The QueryMXPERSON element has the following types:
v The QueryMXPERSON element is type QueryMXPERSONType.
v QueryMXPERSONType has element MXPERSONQuery, which is type

MXPERSONQueryType.
v MXPERSONQueryType has elements for all the configured attributes of the

PERSON object and all of its child objects (EMAIL, PHONE, and SMS).

The QueryMXPERSON operation element uses the following attributes:
v uniqueResults – Is a Boolean value that when set to 1 (True), directs the query to

return a single and unique record when the value is set to 1 (True). If more than
one record is found, an error is returned. When the attribute is not provided, the
default value is 0 (false).

v maxItems – When this value is set to 10 on the query, it limits the number of
records that are returned in the query to 10, even when the result set of the
query may be greater than 10. When the attribute is not defined, all rows in the
result set of the query are returned.

v rsStart – When this value is set to 11 on the query, all the records in the result
set are returned starting with record 11. The query result skips records 1 - 10.
When the attribute is not defined, the records are returned starting with record 1
in the result set.

The MXPERSONQuery content element uses the following additional attributes:
v orderby – Using this value is equivalent to using an Order By in a SQL

statement. The attribute can contain a list of comma-separated field names that
also include ASC and DESC options. When the attribute is not defined, the
query returns records in the order that it was retrieved by the database.

v operandMode – This value has two valid values, AND and OR. The system uses
this value when one or more fields is used for evaluation in a query execution.
When you use the AND value, all field evaluations must be true. When you use
the OR value, only one of the field evaluations must be true. When the attribute
is not defined, the default value is AND.

QueryMXPERSONResponse element

The QueryMXPERSONResponse element has the following types:
v Element QueryMXPERSONResponse is type QueryMXPERSONResponseType.

Integrating data with external applications 299

v The QueryMXPERSONResponseType has element MXPERSONSet, which is type
MXPERSONSetType.

v MXPERSONSetType has elements for all the configured attributes of the
PERSON object and elements for child objects defined in the object structure
(PHONE, EMAIL, XYZ, and SMS).

The QueryMXPERSONResponse element has the following attributes:
v rsStart – This value contains the value set on the query request. If the value is

not defined on the request, the default response value is 1.
v rsCount – This value contains the number of records that are returned in the

query response.
v total – This value contains the number of records in the final query result set.

The total value can be more than the number of records that are returned when
the maxItems attribute is used in the query request.

Query selection criteria

The object structure element of a query request contains the selection criteria for
the query. A query can select records based on a single value, a range of values, or
a provided 'where' clause. The integration framework supports the use of query
operators such as = or >.

Selection criteria apply only to attributes of objects in the top two levels of the
object structure; that is, the primary object and its immediate child objects.
However, the response includes data from all the objects in the object structure.

Field selection
A field-based query compares the value in a database field with the value in the
XML field of the query request.

The following sample query searches for employees:
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

The following sample query searches for employees where the PERSONID is equal
to ATI and STATUS is equal to ACTIVE.
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
<PERSONID operator ="=">ATI</PERSONID>
<STATUS operator ="=">ACTIVE</STATUS>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

The operandMode attribute of the MXPERSONQuery element defines the statement
that is run with an AND or an OR condition between the field evaluations. The
default condition that is used by the system is the AND condition. Additionally,
the operandMode attribute can be provided at a field level. In this case, a field
element can have multiple occurrences and can be evaluated for different
conditions, such as a quantity field being evaluated as less than 2 or greater than
10.

300 Integrating Data With External Applications

The following sample query searches for employees where PERSONID is like
%ATI%. The operand represents the default behavior and requires no operator
value.
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
<PERSONID>ATI</PERSONID>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

The following sample query searches for inventory balances where the bin number
is not null.
<QueryMXINVBAL>

<MXINVBALQuery>
<INVBALANCES>
<BINNUM operator =”!="></BINNUM>
</INVBALANCES >
</MXINVBALQuery>
</QueryMXINVBAL>

The following sample query searches for the inventory balances where the bin
number is null.
<MXINVBAL>
<INVBALANCES>
<BINNUM>NULL</BINNUM>
</INVBALANCES >
</MXINVBAL>

The following sample query uses the equivalent of a SQL IN clause to search for
the employees whose status is ACTIVE or INACTIVE.
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
<STATUS>ACTIVE,INACTIVE</STATUS>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

The following sample query searches for employees where the PERSONID starts
with the letter A.
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
<PERSONID operator ="SW">A</PERSONID>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

The following sample query searches for employees where the PERSONID ends
with the letter Z.
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
<PERSONID operator ="EW">Z</PERSONID>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

Integrating data with external applications 301

Field evaluation
The operator attribute compares the value of a database field with one or more
values and has the format operator = value.

The value attribute can have the following values.

Value Description

= equal

!= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

EW Ends With

SW Starts With

Use the less than and greater than attributes with numeric values and date fields
only.

For example, to find all employees that have an ACTIVE status, format the query
as follows:
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
<STATUS operator ="=">ACTIVE</STATUS>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

Range selection
A query can search for records with a value that falls within a range of values. The
format depends on whether the selection criterion is open-ended or it contains an
upper and lower range.

The following sample query searches for purchase orders where the
DEPARTMENT is greater than 1000.
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
< DEPARTMENT operator=">=">1000</DEPARTMENT>
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

The following sample query searches for person records where the PERSONID is
greater than 1000 and less than 20000. The query uses two instances of a single
field element, the first with the From selection criteria, and the second with the To
selection criteria:
<QueryMXPERSON>
<MXPERSONQuery>
<PERSON>
< PERSONID operator=">=">1000</PERSONID >

302 Integrating Data With External Applications

< PERSONID operator="<=">20000</PERSONID >
</PERSON>
</MXPERSONQuery>
</QueryMXPERSON>

Where clause selection
A query can search for records based on a SQL 'Where' clause that can be provided
as part of the integration query XML. The Where clause offers support for more
complex queries and the querying of classification-related data.

The use of the 'Where' clause is mutually exclusive from the use of individual
elements. If a query request provides data for the Where element and other
elements in the XML, only the WHERE element is used in the query execution.

The WHERE element is located on the same level as the top-level object in an
object structure (purchase order), as in the following example:
<QueryMXPO xmlns="http://www.ibm.com/maximo">

<MXPOQuery>
<PO> </PO>
<WHERE> </WHERE>

</MXPOQUERY>
</QueryMXPO>

The WHERE element is available in the schema only when the operation is Query
and can exist only once. To join multiple tables in the query, use ‘exists' within the
Where clause, in the same manner as the WHERE clause from the List tab of an
application. The following sample query, using the MXPO object structure,
retrieves purchase orders that have a PO Line for Item number 1002:
<QueryMXPO xmlns="http://www.ibm.com/maximo">
<MXPOQuery>
<WHERE>(siteid = ’BEDFORD’) and (exists (select 1 from maximo.poline where
(i temnum=’1002’) and (ponum=po.ponum and revisionnum=po.revisionnum and
siteid=po.siteid)))</WHERE>
</MXPOQUERY>
</QueryMXPO>

The result of this query retrieved two purchase orders (not all elements are
included in the example):
<?xml version="1.0" encoding="UTF-8"?>
<QueryMXPOResponse xmlns="http://www.ibm.com/maximo" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" creationDateTime="2012-03-21T11:20:13-04:00"
transLanguage="EN" baseLanguage="EN" messageID="1332343214013260273" maximoVersion=
"7 5 20110413-2230 V7500-721" rsStart="0" rsTotal="2" rsCount="2">

<MXPOSet>
<PO>

<DESCRIPTION>Window and installation for office building</DESCRIPTION>
<ORDERDATE>2000-04-20T14:00:00-04:00</ORDERDATE>
<ORGID>EAGLENA</ORGID>
<PONUM>1013</PONUM>
<POTYPE>STD</POTYPE>
<VENDOR>JK</VENDOR>

.

.

.
<POLINE>

<DESCRIPTION>5 ft. X 6 ft. window pane</DESCRIPTION>
<ITEMNUM>1002</ITEMNUM>
<ITEMSETID>SET1</ITEMSETID>
<ORDERQTY>1.0</ORDERQTY>
<POLINENUM>1</POLINENUM>

.

Integrating data with external applications 303

.

.
<POCOST>

<COSTLINENUM>1</COSTLINENUM>
.
.
.

</POCOST>
</POLINE>
<POLINE>

<DESCRIPTION>Installation of window pane</DESCRIPTION>
<ITEMNUM />
<ITEMSETID>SET1</ITEMSETID>
<ORDERQTY>6.0</ORDERQTY>
<POLINENUM>2</POLINENUM>

.

.

.
<POCOST>

<COSTLINENUM>1</COSTLINENUM>
.
.
.

</POCOST>
</POLINE>

</PO>
<PO>

<DESCRIPTION>Window and installation for Office Building</DESCRIPTION>
<ORDERDATE>2003-02-27T10:07:24-05:00</ORDERDATE>
<ORGID>EAGLENA</ORGID>
<PONUM>1029</PONUM>
<POTYPE>STD</POTYPE>
<VENDOR>JK</VENDOR>

.

.

.
<POLINE>

<DESCRIPTION>5 ft. X 6 ft. window pane</DESCRIPTION>
<ITEMNUM>1002</ITEMNUM>
<ITEMSETID>SET1</ITEMSETID>
<ORDERQTY>1.0</ORDERQTY>
<POLINENUM>1</POLINENUM>

.

.

.
<POCOST>

<COSTLINENUM>1</COSTLINENUM>
.
.
.

</POCOST>
</POLINE>
<POLINE>

<DESCRIPTION>Installation of window pane</DESCRIPTION>
<ITEMNUM />
<ITEMSETID>SET1</ITEMSETID>
<ORDERQTY>6.0</ORDERQTY>
<POLINENUM>2</POLINENUM>

.

.

.
<POCOST>

<COSTLINENUM>1</COSTLINENUM>
.
.
.

</POCOST>

304 Integrating Data With External Applications

</POLINE>
</PO>

</MXPOSet>
</QueryMXPOResponse>

Interface tables
Interface tables are an option for integration with systems that use database tables
to exchange data. This integration option applies only to enterprise services and
publish channels and is always processed asynchronously, by using JMS queues.

Within an external system, there can be one or more publish channels and
enterprise services that are being used for integration with interface tables. Any
channel or service that is using an interface table must be associated with an object
structure that is configured to support flat files and all alias conflicts must be
resolved.

Location of interface tables

The endpoint definition for an external system or a publish channel points to the
database where its interface tables are stored. The database can be the local
application database or a remote database. The predefined content includes the
MXIFACETABLE interface table endpoint which points to the application database.
You can add additional endpoints for remote databases.

Names of interface tables

The integration framework registers interface table names to an enterprise service
or a publish channel. Default names for interface tables are not provided. Apply
the following guidelines when naming interface tables:
v Publish channels and enterprise services that use the same object structure can

use the same interface table name or different interface table names.
v Publish channels and enterprise services that use a different object structure

must use different interface table names.

Interface queue tables

The interface queue tables identify the sequence in which a receiving system
processes the records in the respective interface tables. Two queue tables exist, one
for inbound transactions and the other for outbound transactions. Some
transactions depend on the successful processing of a previous transaction, for
example you must create a user before you can add that user to a security group.
The receiving system must process the records in the same sequence in which the
sending system created the records.

Table 43. Interface queue table

Interface queue table Direction

MXOUT_INTER_TRANS Outbound

MXIN_INTER_TRANS Inbound

External applications that pull data for outbound messages can use the outbound
interface queue table (mxout_inter_trans). However, the external applications can
also choose to use other methods of consuming outbound messages that meet their
integration requirements.

Integrating data with external applications 305

All inbound and outbound transactions must have a record that is inserted into the
corresponding inbound or outbound queue table. This record contains a TRANSID
value, a unique identifier that identifies the interface table to which the transaction
data is written. The corresponding interface table uses the TRANSID value to
identify the record or records that are associated with the transaction. You can
identify the contents of a transaction by looking up all the records with a given
TRANSID value in the corresponding interface table.

The sequence of TRANSID identifies the sequence in which records are processed
by the integration framework. For example, when users and security groups are
entered into the system, the TRANSID values for the user record must be lower
than the TRANSID values for the security group records that reference that user.

The difference between the MXIN_INTER_TRANS and MXOUT_INTER_TRANS
queue tables is the direction of the interface table records that they track. The
external system must write to the MXIN_INTER_TRANS queue table, and the
integration framework must read from it. The integration framework writes to the
MXOUT_INTER_TRANS queue table, and the external system reads from it.

The external system can use the MXOUT_INTER_TRANS table or retrieve
outbound records from interface tables. The interface queue tables are generated
the first time that you create interface tables for an endpoint. Each endpoint has its
own interface queue tables and a counter for maintaining the outbound TRANSID
value.

Creation of interface tables
When an enterprise service and a publish channel use the same interface table, the
Create Interface Tables window displays a list of interface tables based on the
uniqueness of the interface table name and its corresponding endpoint.

You can create interface tables for enterprise services and publish channels when
the associated object structures are marked as flat supported. The Support Flat
Structure check box must be selected on the object structure. All alias conflicts
must also be resolved for the object structure before you can create an interface
table.

You can create interface tables for data synchronization on enterprise services and
on publish channels. Interface tables do not support Query and Invoke operations.
You can create interface tables for a specific endpoint. You must identify where the
tables are created.

The database location that is referenced by the endpoint can be a local database or
a remote database. When you create interface tables on a local database, the
columns are registered in the system data dictionary. Local interface tables that use
a database table and a database column show all updates (except insertions and
deletions) to a base column attribute (such as data type) when you run the
database configuration operation. When columns are added to or deleted from the
base table, you must regenerate the corresponding enterprise service and the
publish channel interface tables to apply the column changes. No changes are
applied in the remote databases. You must regenerate remote interface tables to
apply the column changes.

306 Integrating Data With External Applications

Regeneration of interface tables
When columns are added or deleted from the system database tables, you must
regenerate all local and remote interface tables that are associated with those object
structures.

You regenerate interface tables by using the Create Interface Tables action in the
External Systems application. If you select the Rename Existing check box, the
application backs up existing data in the corresponding interface table to the
INTERFACETABLENAME_BAK table.

If necessary, you can restore the data to the new table. Depending on the
configuration of the multitenancy environment, you may need to request the
assistance of the system provider to access the data that you want to restore. If you
do not back up the table, the table is dropped and the data is lost when you
regenerate the table. You cannot regenerate an interface table when the
MXIN_INTER_TRANS queue table contains a record that points to that interface
table. When a row exists in that queue table, the corresponding inbound
transaction is ready to process, or the inbound transaction is in error.

The interface table creation process does not check for records in the
MXOUT_INTER_TRANS queue table.

Deletion of interface tables and records
When related inbound transaction records are successfully processed in an
interface table, the corresponding record is deleted from the MXIN_INTER_TRANS
queue table. The deletion indicates that the transaction was delivered successfully
to the inbound JMS queue.

Records are deleted from the MXIN_INTER_TRANS queue table and not from the
individual interface tables. The system administrator determines when and how to
delete records from the interface tables.

For outbound transactions, the external system must manage the deletion and
archiving of data in the queue table and interface tables. You cannot delete
interface tables in the user interface or by deleting the corresponding object
structure. An administrator must manage the archiving of data in the interface
tables and can drop the table, if necessary.

Format of interface tables
An interface table has the same format as its corresponding object structure,
including persistent and nonpersistent columns and excluding any columns that
are excluded from the object structure.

The interface table includes additional columns that identify the sequence in which
the sending system writes, and the receiving system processes the records in the
various interface tables.

Key columns

If the interface table represents a hierarchical object structure with parent-child
object relationships, the table does not include any part of the child object key
columns that are included in the parent object key columns. For example,
PERSONID is a key column in the PERSON, PHONE, EMAIL, and SMS records.

Integrating data with external applications 307

The PERSONID column appears only at the parent (PERSON) level in the
MXPERSON_IFACE interface table.

Duplicate columns and aliases

The XML representation of a hierarchical object structure contains duplicate
column names, but interface table and flat file representation do not. If an object
structure has duplicate non-key column names in both a parent object and a child
object, a duplicate column name error occurs when the interface table or a flat file
record is generated.

To resolve this issue, change the alias name for one of the duplicate column names.
Every system database column can have an alias alternate name. When an alias
exists, the system uses the alias when interface tables and flat files are generated.
Change the alias to eliminate the duplicate column name error.

Most columns do not have an alias, but some columns have aliases that support
the predefined enterprise services or publish channels.

A column within an object structure can have a single alias. If the object structure
is used by multiple publish channels and enterprise services, a change to an alias
affects every interface table that is associated with the object structure.

The columns in the predefined object structures have system-assigned aliases.
Check for duplicates when you create a hierarchical object structure or when you
add an object to a predefined object structure. The Add/Modify Alias window
shows the fields and aliases for the objects in a selected object structure, and
identifies any duplicate alias names with a check in the duplicate column. If a
duplicate alias exists, overwrite its value in the ALIASNAME column.

Restricted columns

The HASLD field is an internal system column that is excluded from all object
structures. Do not include this column in any object structure that is associated
with an interface table. The LANGCODE field is also excluded from the predefined
object structures.

Integration processing columns

The following table shows the columns that are used in the interface table
sequencing, retrieval, and processing. Some columns are in either the interface
queue tables or the interface tables; some are in both places.

Table 44. Integration processing columns

Column name

Interface
queue
table

Interface
table Description

IFACENAME Yes No The IFACENAME column contains the name of the enterprise
service or the publish channel that is used in a transaction. The
column is populated in outbound transactions. For inbound
transactions, the external system must populate the column with
the name of the enterprise service or the publish channel that
corresponds to the row that is inserted into an interface table.

308 Integrating Data With External Applications

Table 44. Integration processing columns (continued)

Column name

Interface
queue
table

Interface
table Description

TRANSID Yes Yes The TRANSID column in an interface queue table is a sequential
number that uniquely identifies an integration transaction. The
TRANSID and the interface table name, identifies a unique
transaction. The interface queue table can contain one record with
a TRANSID value. The corresponding interface table can have one
or more records with the TRANSID, depending on the number of
records that are written to that interface table as part of that
enterprise service or the publish channel.

If a transaction writes to multiple interface tables, the interface
queue table contains a separate record with a unique TRANSID
value for each interface table.

Each interface queue table maintains its own TRANSID counter.
The outbound TRANSID value is initialized when the interface
queue table records are generated. You must create and maintain
the TRANSID counters that populate the inbound queue tables
and the interface table records.

If the external systems do not correctly manage the inbound
TRANSID counters, sequential processing is not guaranteed.
Ensure that the TRANSID values that the external system
generates does not duplicate the TRANSID value that is generated.
Errors occur if duplicate TRANSID values exist and when you
process the same object structure in both an inbound and an
outbound direction by using a single interface table.

Each endpoint has its own set of interface queue tables and its
own outbound TRANSID counter.

TRANSSEQ No Yes When multiple records in an interface table share the same
TRANSID value, the TRANSSEQ column provides a secondary
sequence number that indicates the sequence in which those
records should be processed.

EXTSYSNAME Yes No The EXTSYSNAME column in the interface queue tables can
contain inbound or outbound data. For inbound transactions, the
column contains the name of a valid and enabled external system
that is defined in the integration framework. For outbound
transactions, the column contains the name of the external system
that is the destination of the transaction.

Integrating data with external applications 309

Table 44. Integration processing columns (continued)

Column name

Interface
queue
table

Interface
table Description

ACTION Yes No The ACTION column contains the action to perform on the
external system (outbound) or on the integration framework
(inbound). The following actions can be used:

v Add: Inserts the data that is provided in the message.

v Delete: Deletes the parent data, and any related child data, from
the database.

v Change: Updates parent and child data contents of the message,
but does not delete existing child data that is not explicitly
specified in the message.

v Replace: Replaces the existing records with the contents of the
message and deletes existing child data that is not referenced in
the message.

v AddChange: If the primary record does not exist, processes as
an add action and, otherwise, processes as a change action.

v Null: If the primary record does not exist, processes as an add
action and, otherwise, process as a replace action.

IMPORTMESSAGE Yes (used
inbound

only)

No The IMPORTMESSAGE column holds any error message that was
produced when the interface table row was moved to the inbound
queue.

TRANSLANGUAGE Yes No The TRANSLANGUAGE column identifies the language of the
transaction. For an outbound transaction, this value indicates the
language of the user who initiated the transaction. For an inbound
transaction, this value indicates the language of the transaction.
Any attributes that support a multilanguage environment are
expected to be in the language that the TRANSLANGUAGE value
defines.

MESSAGEID Yes (used
outbound

only)

No The MESSAGEID column is a unique identifier that the system
assigns to every outbound transaction.

IFACETBNAME Yes (used
outbound

only)

No The IFACETBNAME column is the name of the interface table that
corresponds to the IFACENAME column. This column applies to
outbound transactions only.

Long description columns in an Oracle Database

Long description columns are stored in a CLOB (character large object) column in
an Oracle Database. Interface tables contain two versions of each CLOB column,
one with data type CLOB, and one with data type ALN with a character length of
4000. In the following example, the name of the CLOB column is the column alias.
The name of the alphanumeric column is the column alias with the suffix 2.

Table 45. Long description columns in an Oracle Database

Data type Name of description column

CLOB PERSON_DESCRIPTION_LD

ALN PERSON_DESCRIPTION_LD2

The system populates both columns in outbound transactions. For inbound
transactions, the integration framework uses the value in the ALN column if it is

310 Integrating Data With External Applications

not null; otherwise, the value in the CLOB column is used.

Interface table polling
A predefined cron task polls the interface queue table and uses the IFACENAME,
EXTSYSNAME, and TRANSID values to place the corresponding records into the
appropriate inbound JMS queue for processing. The interface polling process
checks that the names of the external system and enterprise service are valid and
enabled.

You must configure the cron task to initiate interface table polling. You can also
perform additional tasks to enhance performance during interface polling.

Interface table polling cron task
The IFACETABLECONSUMER cron task is a predefined cron task that polls the
inbound interface queue table for new records to process.

The interface table polling process checks that the external system and enterprise
service names are valid and currently enabled. If they are not, the record is marked
in error and remains in the interface table.

If you disable interface table polling, new records remain in the interface tables.
The messages that were sent to the inbound JMS queue are processed.

You must set up a mechanism to retrieve outbound transactions from the interface
tables. You can use a polling program, as the system does for inbound transactions,
triggers, or any other mechanism.

The cron task has the following parameters that you can configure. All parameters
are optional.

Table 46. Interface table polling cron task parameters

Parameter Description

EXITCLASS Java exit class that enables the manipulation
of data before it is written to an inbound
queue.

ENDPOINT Endpoint that is associated with the interface
table. The default value is the predefined
endpoint value that points to the local
database.

ENTERPRISESERVICE Enterprise service to be polled. The default
(null value) is all enterprise services. If you
specify a value for this parameter, you also
must specify a value for the EXTSYSNAME
parameter. The values limit the polling
thread to a specific enterprise service instead
of the default behavior, which polls for all
enterprise services.

TARGETENABLED Ensure that the value is at the default of 0
(false). The functionality of this flag is
superseded by the donotrun functionality.
Use the donotrun parameter in the cron task
framework to control which servers the cron
task runs on.

EXTSYSNAME External system to be polled.

Integrating data with external applications 311

Table 46. Interface table polling cron task parameters (continued)

Parameter Description

QUEUETABLE Enterprise service queue table. The default
value is MXIN_INTER_TRANS.

Advanced interface table polling
You can perform advanced configuration of the interface table polling process to
improve its performance when reading data from interface tables.

If you send inbound messages through the continuous JMS queue and do not
require messages to be maintained in first-in-first-out sequence, you can improve
the performance of interface table polling.

Multiple cron tasks

The interface table polling process uses a single cron task to read all messages from
all interface tables for all external systems that write to the tables. For improved
performance, you can configure multiple instances of the
IFACETABLECONSUMER cron task with different property values. Multithreaded
polling is useful in a clustered configuration, because different threads can run on
different servers, thereby balancing the load.

To designate an instance of the cron task to run on a specific application server, in
the Cron Task Setup application, set the TARGETENABLED property to 1 and, on
the application server, set -DIFACETBCONSUMER.instance1=1. When you implement
multiple cron tasks, you also must implement mutually exclusive selectors to avoid
processing a message more than once.

To define selectors, assign values to the EXTSYSNAME and ENTERPRISESERVICE
parameters in the Cron Task Setup application. You can, for example, set
EXTSYSNAME=EXTSYSNAME1 and ENTERPRISESERVER=MXPERSONInterface.
Use a pipe delimiter to add multiple tables, such as Set
ENTERPRISESERVICE=MXPERSONInterface|MXPHONEInterface.

If you configure multiple instances of a cron task the selectors must be mutually
exclusive, so that messages are not processed multiple times. Selectors must
retrieve all the enterprise service transactions that you use, so that no messages are
left unprocessed.

Multiple queues

You can improve performance by setting up multiple interface queue tables. For
example, you can write each interface to a separate queue table and define
separate cron tasks to process the queue tables independently of one another. You
also can set up separate queue tables for each external system and, within each
queue table, define selectors for each interface. Depending upon the complexity of
your integration, you can use multiple queue tables instead of multiple selectors.
To set up multiple queue tables, create the queue tables in the same database as
the interface tables, and include all the columns that are in the
MXIN_INTER_TRANS queue table. You must design the external system to write
to the appropriate queue tables. Ensure that the external system does not insert an
interface table message into more than one queue table so that the message is not
processed multiple times.

312 Integrating Data With External Applications

Processing interface tables on an external system
To enable an external system to use interface tables, you must create interface
tables, define backup procedures for restoring interface tables, and configure the
archiving of interface tables.

Enabling inbound processing
To configure inbound processing of interface table data from an external system,
you must create a TRANSID counter and create records for the interface table and
queue.

Before you begin

To use interface tables, you must create the tables and configure the
IFACETABLECONSUMER cron task.

Procedure
1. Create and initialize the outbound TRANSID counter.
2. Create records for each interface table that an inbound transaction writes to,

populating each record with the following information:
a. The transaction data
b. The incremented TRANSID value
c. If multiple records exist for the same interface table, the incremented

TRANSSEQ value
3. Create an MXIN_INTER_TRANS queue record with the following information:

a. The same TRANSID value that is contained the interface table record
b. The name of the enterprise service that corresponds to the interface table, in

the IFACENAME column
c. Optional: The ACTION value
d. The identifier of the external system, in the EXTSYSNAME column

4. Perform a single commit, to commit all records for a transaction at one time.

Enabling outbound processing
To configure outbound processing , you must set up and configure a process, such
as a polling program or a trigger, to retrieve transactions from the
MXOUT_INTER_TRANS queue table.

Before you begin

To use interface tables, you must create the tables.

Procedure
1. Set up a process to retrieve interface table transactions by using the

MXOUT_INTER_TRANS queue table. You can use a polling program, a trigger,
or any other mechanism.

2. For the polling program to process transactions sequentially configure it to read
the records in the MXOUT_INTER_TRANS queue table in the TRANSID
sequence.

3. Enable each record in the MXOUT_INTER_TRANS queue table:
a. Access the interface table that you just identified, and retrieve the first

record in which the TRANSID value matches the TRANSID value in the
current MXOUT_INTER_TRANS queue record. If the interface table

Integrating data with external applications 313

contains multiple records with the same TRANSID value, retrieve and
process them in TRANSSEQ sequence.

b. Process data according to the value in the ACTION column of the interface
queue table.

4. Commit all records for a single database transaction.
5. Delete the current record from the MXOUT_INTER_TRANS queue table.

What to do next

Implement error management, based on your external system requirements.

Integration modules
An integration module provides a mechanism for a process management product
to invoke an external operational management product. You can configure an
integration module to automate logical management operations, such as software
deployment, by using an operational management product.

A process management product can invoke an integration module from an
application, a workflow process, or an escalation process. The integration module
then invokes an operational management product. The operational management
product automates a service management process, such as a software deployment.
The implementation returns the results to the process management product.

If predefined modules are provided with your operational management product,
use the process solution installer to load them into the integration framework. If
you are familiar with the programming interface for the operational management
product, you can create integration modules when one does not exist.

Integration module components
An integration module is composed of defined integration framework components.
You can configure the integration module to be implemented as a Java class or as
an invocation channel.

When you install a predefined integration module, integration module artifacts
with the Java class and XSL files are provided. An integration module also
provides logical management operation definitions.

Integration module definitions
When you install an integration module, the options that you select are used to
form the module definitions.

The integration module definition includes the following information:
v The name, version, and description of the integration.
v Operational management product and version.
v Handler that identifies the protocol that the integration module uses to invoke

an operational management product.
v Integration module implementation choice, either a Java class or invocation

channel.

The following components are contained in the integration module definition:
v The logical management operations that the integration module supports.

314 Integrating Data With External Applications

v The integration module properties that are unique to the integration module.
Use the properties to configure the behavior of the integration module.

Operational management products
An operational management product automates system processes, such as software
deployment. Operational management product services are run on assets, such as
servers. The assets are referred to as configuration items.

Multiple instances of operational management products can exist in a production
environment. More than one operational management product can manage a single
configuration item. Each operational management product has its own unique
identifier, a source token, for each configuration item.

The database includes a repository of operational management product and
configuration item information. This information includes relationships between
the operational management products and configuration items, and the source
tokens that drive the integration between process management products and
operational management products.

Logical management operations
Logical management operations identify the actions that integration modules
support, such as Get Status and Deploy Software. A logical management operation
consists of a data source, target, and specific object field attributes that the source
and target use during a process invocation.

Logical management operations act as interfaces between the process management
product and the integration module. You can design and develop integration
modules and process management products independently. You can install logical
management operation definitions with a product and you can also create logical
management operations in the Logical Management Operations application.

The definition of a logical management operation contains the following properties:

Property Description

Name The name of the action, such as Get Status
or Deploy Software.

Namespace A unique qualifier, such as
com.ibm.tivoli.deployment.

Integrating data with external applications 315

Property Description

Invocation pattern v Synchronous: The process management
product issues a request and the
integration module returns the results of
the operation immediately.

v Asynchronous one-way: The process
management product issues a request, and
no response is returned.

v Asynchronous deferred response: The
process management product issues a
request, and a token identifies the instance
of the request. The process management
product passes the token as input to
another logical management operation,
which then obtains the status of the
original request.

v Asynchronous callback: The process
management product issues a request, and
a token identifies the instance of the
request. The operational management
product uses a token to perform a
call-back to identify and to report the
status of the original request. The
call-back, which is provided by the
integration module, inserts or updates a
business object.

Source business object The input object for the logical management
operation.

Response business object The output of the object for the logical
management operation.

Business object attributes The specific attributes of the objects that are
needed either for input or output and their
data types.

Input objects and input object attributes identify the data that the process
management product passes to the integration module. If the logical management
operation is configured with input attributes and does not contain an input object,
the process management product can pass any business object that has the
required input attributes. If an input object is specified, the process management
product must pass the business object to the integration module. The response
object and attributes identify the data that the integration module returns.

Implementation prerequisites
Before any integration module implementations occur, you must ensure the logical
management operation is associated to one or more integration modules. The
integration module then must have an association with an operational
management product. Finally, the logical management operations on each
operational management product must be enabled.

Logical management operation associations

Typically, there is a one-to-one communication between a logical management
operation and an operational management product function. However, a single

316 Integrating Data With External Applications

logical management operation invocation can cause the integration module to
invoke an operational management product multiple times.

An integration module that uses an invocation channel can run logical
management operations only in the following circumstances:
v The source object that is defined on the logical management operation must

match the main object of the request object structure that you define on the
invocation channel.

v If the invocation channel is not configured to process a response, you cannot
associate a response object with the logical management operation.

v The response object that you define on the logical management operation must
match the main object of the response object structure that you define on the
invocation channel. The match must occur when you configure the invocation
channel to process a response.

Operational management product associations

The integration module can support multiple logical management operations for
an operational management product. When you run the integration module, the
name and namespace values of the logical management operation specify the
action to perform.

Operational management product and integration module associations are created
when the OMPPRODUCTNAME and OMPVERSION values are added to the
integration module. If multiple versions of the operational management product
are used with the integration module, use a null value for the OMPVERSION.

Logical operation management enablement

More than one integration module can implement the same logical management
operation on an operational management product. Use the ISPRIMARY attribute to
identify the preferred integration module for the logical management operation on
the operational management product. Only one integration module can have the
ISPRIMARY value set to a true for any given logical management operation -
operational management product combination.

Implementation properties
The integration framework can automatically process integration data when you
implement an integration module. You can customize the implementation if you
want to bypass parts of the automatic process.

Integration module parameters
The integration framework provides integration module input parameters,
including source and response objects and object sets, and endpoint names. These
parameters are passed when you run an integration module as a Java class or as
an invocation channel.

The following table lists the psdi.iface.omp.IMConstants interface parameters and
their names.

Name Description

IM The instantiated ServiceInvoker object which
can be a Java integration module or an
invocation channel.

Integrating data with external applications 317

Name Description

IMNAME The name of the integration module.

IMVERSION The version of the integration module.

LMONAME The name of the logical management
operation that is invoked.

LMONAMESPACE The name space of the logical management
operation that is invoked.

OMPGUID The globally unique identifier (GUID) of the
operational management product that the
integration module uses.

ENDPOINTNAME The name of the endpoint that the
integration module uses to communicate
with the operational management product.

ENDPOINTPROP A map of
String.psdi.iface.mic.MaxEndPointPropInfo
properties that override the endpoint
properties.

USERNAME The user name that the integration
framework uses to communicate with the
endpoint.

PASSWORD The password for USERNAME.

Integration module process flow
Java-based integration modules populate the logical management operation
response object or response object set with the results of the operation. For
invocation channels, you can specify a mapping from the operational management
product response to the response object or set. The integration framework copies
the data into the response object or set.

Integration modules must quickly return to their callers. If the external service is a
long-running service, the integration module must create another thread. The new
thread makes the call to the operational management product, while the original
thread returns to the caller.

Integration modules perform the following processing tasks:
1. Retrieve input from the source object or source object set.
2. If applicable, retrieve the integration module-specific properties.
3. Perform all processing logic that the logical management operation requires

before it calls the operational management product.
4. Call the operational management product.
5. If applicable, handle the operational management product response.
6. If applicable, populate the response object or response object set with the return

data.
7. Return processing information back to the caller.

Endpoints
An integration module that contains an invocation channel must use an endpoint.
A Java class integration module can use an endpoint or use a custom approach to
external service invocations.

318 Integrating Data With External Applications

Endpoints contain URL properties and handler properties that specify the transport
mechanism to use. An endpoint with a web service handler has different properties
than an endpoint with a command-line handler. Integration module endpoints and
endpoint properties can be overwritten at run time when the process management
product passes endpoint properties as input to the integration module. The
USERNAME and PASSWORD properties that are returned from the credential
mapper can also override the endpoint properties.

Java integration modules can communicate directly with an operational
management product or external integration module, without the use of an
endpoint. If you do not use an endpoint, you eliminate the need for the Java
integration module to convert source objects into the required XML format. When
you exclude endpoint use, you can use any communication protocol that is
supported by the operational management product. Integration modules are not
required to use endpoints. You can configure the integration module to
communicate with an operational management product by using integration
module properties.

The integration framework provides predefined handlers that support
communication protocols such as HTTP and web services. If a predefined handler
is not available to support the operational management product service protocol,
implement an external integration module. The external integration module acts as
an interface to the operational management product service that can use one of the
available handler protocols. An alternative solution is to write a custom handler
that supports the operational management product service protocol.

Configure a different endpoint for each operational management product to
establish individual protocols for each product. The handler that you define for the
endpoint must match the handler that you configure for the integration module.

Integration modules based on invocation channels require an endpoint. The
endpoint name is one of the parameters the integration framework passes as input
to the invocation channel. The caller of the integration module can override the
endpoint name.

Regardless of whether you use an endpoint handler to communicate with the
operational management product, the integration module must handle scenarios
that require multiple invocations of the operational management product for a
single logical management operation execution.

Invocation channel or Java class implementation
You can implement an integration module either as a Java class or as an invocation
channel. Before developing an integration module, review the advantages and
disadvantages to invocation channel or Java class usage.

Invocation channel and Java class comparison
Before you develop an integration module, consider the advantages and
disadvantages of using a Java class or an invocation channel.

Advantages and disadvantages of using an invocation channel

Implementing an integration module by using an invocation channel has the
following advantages:

Integrating data with external applications 319

v An invocation channel is useful when you pass complex data to the endpoint. It
is also useful when you can define a clear mapping between the fields in the
source object and the input the endpoint requires.

v Can support hierarchical object structures on input and output transactions.
v The integration framework handles the conversion of objects to XML, and XML

to objects.
v Can be configured to use processing classes, user exits, and XSL mapping for

inbound and outbound transactions.
v The integration framework performs endpoint invocation.
v Can be invoked directly without an association to an integration module or a

logical management operation.
v A simple integration can be implemented using system configuration that does

not require you to restart the application server.

Implementing an integration module by using an invocation channel has the
following disadvantages:
v Requires more registration and configuration of system artifacts, even when the

invocation is simple.
v Multiple applications cannot use the integration module with different business

objects.
v Requires additional knowledge of the integration framework.
v Supports only a single invocation of the configured endpoint. It requires

additional coding to support multiple invocations.
v Requires additional coding to support a long-running service. By default, the

invocation channel waits for a response from the endpoint.

Advantages and disadvantages of using a Java class

Implementing an integration module by using a Java class has the following
advantages:
v Requires less registration and configuration of system artifacts.
v Can be used by different applications while using different business objects.
v Can be designed to make multiple external invocations.
v Can use different communication protocols for different logical management

operations and operational management products.
v Supports the use of another thread to accommodate a long-running service.
v Can implement multiple logical management operations, even when the input

configuration and the output configuration is different.
v Is less likely to require the use of an external integration module.

Implementing an integration module by using a Java class has the following
disadvantages:
v Requires you to perform more Java coding.
v Does not support an object structure with a parent and child relationship as

input or output. Only the parent object can be used as input, and the Java code
must find the child relationship.

v Conversions of objects to XML and XML to objects must be coded when you use
an endpoint handler.

v Customization must be built into the design of the integration module.
Customization cannot be added later without redeploying the code.

320 Integrating Data With External Applications

v Use of any integration framework components, such as an endpoint handler,
must be coded in the Java class.

Invocation channel implementation
Invocation channels use object structures in its implementations to expand the
message data content. The object structure uses the object that the process
management product passes as the source object to build an entire record that can
consist of multiple related objects.

The objects that are identified in the object structures are used in the XML message
creation. When you use an invocation channel, the data must conform to the XML
schemas specified for the associated object structures, and you must define an
endpoint for the invocation channel.

Invocation channels support optional inbound and outbound processing exit
classes. The integration framework uses processing exit classes to implement
additional logic. The inbound and outbound processing exit classes must be
instances of the Java class psdi.iface.migexits.ExternalExit.

For outbound transactions, the integration framework calls the following method:
public StructureData setDataOut(StructureData irData)

For inbound transactions, the integration framework calls the following method:
public StructureData setDataIn(StructureData erData)

When you override these methods, you can perform additional integration module
processing. The properties that are passed to the invocation channel are available
to the processing classes.

The following outbound processing class code shows you how to retrieve the
operational management product globally unique identifier when you run an
invocation channel:
import psdi.server.MXServer;
import psdi.iface.omp.IMConstants;
import psdi.iface.omp.OmpServiceRemote;
import psdi.iface.mic.*;
import psdi.iface.migexits.*;
.
.
.
public class OutboundCIExit extends ExternalExit implements IMConstants
{
public StructureData setDataOut(StructureData irData)
throws MXException, RemoteException
{
IntegrationContext cntx = IntegrationContext.getCurrentContext();
String ompGUID = cntx.getStringProperty(OMPGUID);
.
.
.

}
}

Additional features of the invocation channel include user exit Java classes and an
XSL mapping layer. You can configure the XSL mapping layer to do XML mapping
or data transformation.

Integrating data with external applications 321

If the object structure that you need for your integration module invocation does
not exist, you can create an object structure in the Object Structures application.
You also can use XML with the MXINTOBJECT object structure to create object
structures as part of the installation process.

Java class implementation
Integration modules can be implemented to use Java class files. Using a Java class
file eliminates the need for integration component registration and configuration.
Additionally, all the underlying integration module implementations are
transparent to the process management product.

Java class integration modules must implement the
psdi.iface.mic.ServiceInvoker Java interface. The service invoker Java interface is
included in the businessobjects.jar file. Include the integration module Java class
in the system class path at run time.

The service invoker Java interface has variations of the following method
signature:

public byte[] invoke(Map String,Object metaData, MboRemote sourceMbo,
MboRemote targetMbo, String endPointName) throws MXException,
RemoteException;

v metaData is a map of the name and value properties that includes:
– The integration module name and version.
– The logical management operation name and name space.
– The operational management product globally unique identifier.
– The endpoint name and any endpoint properties that are being overwritten.

v sourceMbo is the source object that you defined on the logical management
operation.

v targetMbo is the response object that you defined on the logical management
operation

v endPointName is the name of the endpoint that you use for communication with
the operational management product.

If you configure the integration module to implement multiple logical management
operations, the integration module must determine which logical management
operation is being called. At run time, the integration module retrieves the
LMONAME and LMONAMESPACE properties from the metaData input map:
import psdi.iface.omp.IMConstants;
.
.
.
String lmoName = metaData.get(IMConstants.LMONAME);
String lmoNamespace = metaData.get(IMConstants.LMONAMESPACE);

The integration module can retrieve logical management operation data from the
source object. The following example code retrieves logical management operation
values from the source object:
String guid = sourceMbo.getString("GUID");
int packID = sourceMbo.getInt("PACKID");
boolean hasSubs = sourceMbo.getBoolean("HASSUBS");

In the example, the logical management operation has an alphanumeric input
attribute called globally unique identifier, an integer attribute called PACKID, and
a Boolean attribute called HASSUBS.

322 Integrating Data With External Applications

Service invoker methods can take a MboSetRemote set of values as a source input,
instead of a single MboRemote value. In some cases, the integration module passes
all of the objects in the object set to the operational management product. In other
cases, the integration module passes only the first object in the set. There are no set
rules that apply to the integration module behavior, but you must clearly define
the expected behavior in the logical management operation description.

Integration module processing
Process management products use a system action to initiate an integration
module. The action can be associated with an escalation or a workflow, or can be
initiated from a menu or a button. The process management product provides an
action class that invokes the integration module and processes the response that
the integration module returns.

Identification of integration components
The initiation action class identifies the components required for the integration,
including the logical management operation, the operational management product,
and the integration module.

The logical management operation runs a process, such as software deployment,
on a configuration item by using an operational management product. The process
management product provides the necessary input to the integration module,
based on the input business objects and attributes that are defined on the logical
management operation.

The Java action class identifies an operational management product that runs the
logical management operation on the selected configuration item. When you install
configuration items and operational management products, the component
relationships are also installed.

An integration module record identifies which logical management operations are
supported on an operational management product. When the integration modules,
configuration items, and operational management products are registered, the
process management product Java class performs a lookup. The Java class
determines which integration modules that it invokes based on the configuration
items that it uses.

The integration framework includes a service that provides the following utility
methods to assist the class with integration module lookups.

Utility method Function

psdi.iface.app.omp.OmpSetRemote getOMPListForIM
(String imName, String imVersion)

Retrieves a list of the operational management products
that are associated with the integration module.

psdi.iface.app.im.MaxIMSetRemote getIMListForLMO
(String lmoName, String lmoNamespace)

Retrieves a list of the integration modules that
implement the specified logical management operation.

psdi.iface.app.im.MaxIMSetRemote
getIMListForLMOWithOMP (String lmoName, String
lmoNamespace)

Retrieves a list of the integration modules that
implement the specified logical management operation
on any operational management products.

psdi.iface.app.im.MaxIMSetRemote getIMListForOMP
(String ompGuid)

Retrieves the list of the integration modules that
implement at least one logical management operation on
the operational management product.

Integrating data with external applications 323

Utility method Function

Collection getIMListForOMPAndLMO (String ompGUID,
String lmoName, String lmoNamespace)

Retrieves the list of integration modules that implement
the logical management operation on the specified
operational management product.

Returns a collection of psdi.iface.omp.OmpImLmoRelInfo
objects.

Collection getIMListForOMPAndLMO (String ompHostname,
String ompProductname, String ompManufacturer,
String lmoName, String lmoNamespace)

Retrieves the list of integration modules that implement
the logical management operation on the specified
operational management products.

Returns a collection of psdi.iface.omp.OmpImLmoRelInfo
objects.

psdi.iface.omp.OmpImLmoRelInfo getPreferredIM
(String ompGUID, String lmoName, String
lmoNamespace)

Retrieves the preferred integration module that
implements the logical management operation on the
specified operational management product.

psdi.iface.omp.OmpImLmoRelInfo getPreferredIM
(String ompHostname, String ompProductname, String
ompManufacturer, String lmoName, String
lmoNamespace)

Retrieves the preferred integration module that
implements the logical management operation on the
specified operational management product.

Integration module invocation
Integration modules can be implemented either as Java classes or as invocation
channels. Integration module instances are called service invokers because they
implement the Java interface psdi.iface.mic.ServiceInvoker.

The service invoker interface hides the underlying implementation from the caller.
The invocation of the integration module by the caller is the same, regardless of
the underlying implementation.

Service invoker property map:

The get service invoker utility methods return a map of name and value pairs.

The psdi.iface.omp.IMConstants Java interface defines the names of the properties
that are returned in the map. The property IMConstants.IM contains the instance of
the integration module that the process management product invokes.

The property IMConstants.ENDPOINTNAME contains the name of the endpoint that is
associated with in the operational management product, integration module, and
logical management operation relationship. In most cases, the endpoint property is
the value that the process management product passes to the integration module.
However, in unusual cases, the action class overwrites the configured endpoint.

If a credential mapper is configured, the get service invoker utility methods call
the credential mapper to retrieve the USERNAME and PASSWORD that is used for
endpoint communication. These properties are returned by the utility methods in a
map that is identified by the property IMConstants.ENDPOINTPROPS. The caller can
overwrite any endpoint properties by adding them to this map.

Before the action class calls the integration module, it must populate the source
object with the logical management operation input fields. The action class then
passes the source object data to the integration module with the mapping that is

324 Integrating Data With External Applications

returned by the get service invoker utility method. The action class provides the
logical management operation response object to the integration module when
necessary.

The logical management operation response object requires attributes. The action
class must ensure that the response object has the logical management operation
attributes. The attributes can be persistent or nonpersistent. The response object
typically contains the source object data.

Invoke methods:

The integration framework provides some invoke methods that the caller uses to
invoke an integration module. Invoke methods use properties to determine what
object data is returned to the caller. The properties also determine what action is
taken on the returned data and how the integration framework communicates with
the caller.

The service invoker interface has four invoke method signatures:
v public byte[] invoke(Map <String,Object> metaData, MboRemote sourceMbo,

MboRemote targetMbo, String endPointName)

v public byte[] invoke(Map <String,Object> metaData, MboRemote sourceMbo,
MboSetRemote targetMboSet, int action, String endPointName)

v public byte[] invoke(Map <String,Object> metaData, MboSetRemote
sourceMboSet, MboRemote targetMbo, String endPointName)

v public byte[] invoke(Map <String,Object> metaData, MboSetRemote
sourceMboSet, MboSetRemote targetMboSet, int action, String endPointName)

The action class passes the following properties when it calls one of the invoke
methods on the instantiated service invoker.

Property Description

metaData The property map that the get service
invoker utility method returns.

Source object and object set The object with the input attributes that are
defined on the logical management
operation. This property can contain a null
value.

Target object and object set The object and object set that contains the
return data. This property can contain a null
value.

Action This parameter indicates whether existing
objects in the targetMboSet are updated, or
new objects are added.

The possible values for action are:

v psdi.mbo.MboSetRemote.INSERTONLY

v psdi.mbo.MboSetRemote.UPDATEONLY

Endpoint name The name of the endpoint that the
integration module uses for communication.

Integrating data with external applications 325

Operational management product service method:

Use the operational management product service method when the action class has
a relationship to a configuration item, or when it has a configuration item globally
unique identifier (CIGUID) attribute.

When the action class has an authorized configuration item, instead of an actual
configuration item, you can use the configuration item globally unique identifier
attribute of the authorized configuration item.

The following service method retrieves a list of the preferred integration modules
(service invokers). The integration modules implement the specified logical
management operation on the operational management products that manage the
specified actual configuration item.

public Collection Map getServiceInvokerListForCIAndLMO(String actCIGUID,
String lmoName, String lmoNamespace, UserInfo userInfo)

Each operational management product that has a relationship with the specified
actual configuration item, returns the preferred integration module for the logical
management operation.

Service invoker utility methods:

The getServiceInvoker utility includes methods that retrieve an instance of an
integration module for a logical management operation and an operational
management product.

The following table lists the utility methods provided with the getServiceInvoker
utility.

Utility method Function

Map<String, Object> getServiceInvoker
(psdi.iface.omp.OmpImLmoRelInfo ompImLmoRelInfo,
psdi.security.UserInfo userInfo)

Retrieves the service invoker for the specified integration
module, logical management operation, and operational
management product.

Map<String, Object> getServiceInvoker
(psdi.iface.app.im.OmpImLmoRelRemote
ompImLmoRelRemote, psdi.security.UserInfo userInfo)

Retrieves the service invoker for the specified integration
module, logical management operation, and operational
management product.

Map<String, Object> getServiceInvoker (String
ompGUID, String imName, String imVersion, String
lmoName, String lmoNamespace, psdi.security.UserInfo
userInfo)

Retrieves the service invoker for the specified integration
module, logical management operation, and operational
management product.

Map<String, Object> getServiceInvoker (String
ompGUID, String lmoName, String lmoNamespace,
psdi.security.UserInfo userInfo)

Retrieves the service invoker for the preferred integration
module for the specified operational management
product and logical management operation.

Collection<Map> getServiceInvokerListForCIAndLMO
(String actCIGUID, String lmoName, String
lmoNamespace, psdi.security.UserInfo userInfo)

Retrieves a list of the service invokers for the preferred
integration modules that implement the specified logical
management operation on the operational management
products.

The operational management products have a
relationship with the configuration item.

326 Integrating Data With External Applications

Integration module response processing
If a logical management operation has a response object, the integration module
updates the response object with the results from its invocation. The action class
determines whether to save the results to the database. If the action class does not
save the results, you can save the data when you view the response results in the
user interface.

If the response object is the primary object from the application, or if the updated
object is based on a relationship with the primary object of the application, the
action class does not save the object. Instead, the user interface prompts you to
save the object. However, if the updated object is unrelated to the primary
application object, the action class saves and commits the changes.

Configuring integration modules
Integration modules receive data requests from process management products and
return the response data from operational management products.

Creating integration modules
You can create an integration module to pass data between local and external
applications. Depending on your needs, you can implement an integration module
as an invocation channel or Java class. Both the invocation channel and Java class
have access to the database and all the objects in memory at the time a process
management product invokes an integration module.

Procedure
1. In the Integration Modules application, click New Integration Module.
2. In the Name and Version fields, enter a unique integration module name and

version number combination. The version field must start with a V and be
followed by an integer between 0 to 9, inclusive. The integer can then be
followed by a decimal point (.) and up to 17 additional integers. For example,
V2.99. or V9.123456.

3. Optional: Enter values in the following fields:

Option Description

Operational Management Product Name The operational management product that
the integration module invokes. If an
integration module works with multiple
products, you do not specify a product
name.

Operational Management Product
Version

The version value of the product that the
integration module invokes. If an
integration module works with multiple
versions of an operational management
product, you do not specify a version
value.

Handler Name The protocol that the integration module
uses to invoke an operational management
product. If the invocation channel has an
associated end point, you cannot configure
a handler for the integration module.

Invocation Channel Name The name of the invocation channel that
the integration module runs. The
integration module uses either an
invocation channel or a Java class. Specify
only one of them.

Integrating data with external applications 327

Option Description

Class Name The name of the Java class that the
integration module runs. The integration
module uses either an invocation channel
or a Java class. Specify only one of them.

4. Click Save Integration Module.

What to do next

You can associate a logical management operation to an integration module to
define the actions that process managers run. You also can associate an operational
management product to an integration module to define the external applications
that you can invoke from a process management product.

Selecting logical management operations for integration modules
You can use the Select Operations dialog box to associate one or more logical
management operations with an integration module record. Logical management
operations define an action that a process manager product runs from an
application.

Before you begin

You first must associate the logical management operation with an operational
management product before a process management product can run a logical
management operation. The logical management operation records that you
associate with an integration module that uses an invocation channel must have a
source object name value. This value must be the same as the top source object
that is registered to the invocation channel. Additionally, the logical management
operation records must have a response object name value when the invocation
channel that processes responses. This value must be the same as the top object
registered to the invocation channel. You can define the logical management
operation source and response object values in the Logical Management Operations
application.

Procedure
1. In the Integration Modules application, select the integration module that you

want to associate to the logical management operations.
2. On the Logical Management Operations tab, click Select Operations.
3. Select the logical management operations that you want to associate to the

integration module record.
4. Click OK.
5. Click Save Integration Module.

What to do next

You can associate an operational management product to an integration module to
define the external applications that you can invoke from a process management
product.

Selecting logical management operations for operational management products:

You can use the Select Operations dialog box to associate one or more logical
management operations to an operational management product. The association

328 Integrating Data With External Applications

that you make to the operational management product enables the logical
management operation. The enablement indicates that the logical management
operation is ready for use.

Before you begin

A logical management operation must be associated with an integration module
before it can be enabled on an operational management product.

Procedure

1. In the Integration Modules application, select the integration module that you
want to associate to the logical management operations.

2. On the Operational Management Products subtab, select the operational
management product that you want to associate to the logical management
operations.

3. In the Logical Management Operations for Operational Management Product
table window, click Select Operations.

4. Select the logical management products that you want to enable for the
operational management product.

5. Click OK.
6. Click Save Integration Module.

Associating a logical management operation with an integration
module
You can associate a logical management operation with an integration module to
define the actions that are taken on an operational management product. Process
management products, such as Change or Deploy, call upon an integration module
to run an operational management product. The operational management product
then runs the logical management product, such as deploy software, and notifies
the process management product of the action status.

Before you begin

You first must associate the logical management operation with an operational
management product before a process management product can run a logical
management operation. The logical management operation records that you
associate with an integration module that uses an invocation channel must have a
source object name value. This value must be the same as the top source object
that is registered to the invocation channel. Additionally, the logical management
operation records must have a response object name value when the invocation
channel that processes responses. This value must be the same as the top object
registered to the invocation channel. You can define the logical management
operation source and response object values in the Logical Management Operations
application.

About this task

The invocation pattern value determines whether the logical management
operation is long-running. It also determines how the process management product
expects a response from the operational management product.

Procedure
1. In the Integration Modules application, select the integration module that you

want to associate with a logical management operation.

Integrating data with external applications 329

2. On the Logical Management Operations subtab, click New Row.
3. Enter values in the following fields:

Option Description

Logical Management Operation Name Identifies the actions that integration
modules support, and the actions that the
process management products request.

Namespace Identifies the domain for the logical
management operation name. An example is
com.ibm.mss.

4. Click Save Integration Module.

What to do next

You can associate an operational management product to an integration module to
define the external applications that you can invoke from a process management
product.

Associating an operational management product with an integration module:

You can associate an operational management product to an integration module to
define the external applications that you can invoke from a process management
product. Process management products, such as Change or Deploy, call upon an
integration module to run an operational management product. The operational
management product then runs the logical management product, such as deploy
software, and notifies the process management product of the action status.

Before you begin

Before a process management product can call an integration module to run a
logical management operation on an operational management product, configure
the following components:
v Define and configure a logical management operation
v Associate the integration module with the logical management operation and

operational management product
v Enable the logical management operation for the integration module on the

operational management product

About this task

You can build and configure relationships between integration modules,
operational management products, and logical management operations. You can
also perform the following actions:
v Associate multiple operational management products with an integration

module
v Enable logical management operations on the operational management product

for the integration module
v Specify a default integration module to use for a particular logical management

operation on an operational management product
v Configure the end point for an integration module and operational management

product combination when the invocation channel has no associated end point

330 Integrating Data With External Applications

Procedure

1. In the Integration Modules application, select the integration module that you
want to associate with an operational management product.

2. On the Operational Management Products subtab, click New Row.
3. Enter a values in the following fields:

v Operational Management Product

v End Point

4. In the Logical Management Operations table window, click New Row.
5. Enter a value in the Logical Operation Management Name field. Default

values display in the Namespace and Description fields.
6. Optional: Select the Is Primary check box to make the integration module the

default integration module for the selected logical management operation.
Select the Is Primary check box when you enable the selected logical
management operation on more than one integration module record.

7. Click Save Integration Module.

What to do next

You can associate a logical management operation with an integration module to
define the actions that are taken on an operational management product.

Configuring logical management operations
You can create a logical management operation to define an action that a process
management product executes from the integration framework. You also can define
what specific object field attributes that they logical management operation uses.

Creating logical management operations
You can define the invocation pattern on a logical management operation. The
pattern value determines whether the logical management operation is
long-running and how the process management product expects a response from
the operational management product.

Before you begin

You must define a logical management operation relationship to an operational
management product and integration module before you can invoke any processes.

Procedure
1. In the Logical Management Applications application, click New Logical

Management Operation.
2. In the Name field, specify a logical management operation identifier.
3. Enter values in the following fields:

Option Description

Source Object Name The input object for the logical
management operation.

Invocation Pattern The pattern of a logical management
operation invocation.

Name Space The secondary identifier for the logical
management operation record.

Integrating data with external applications 331

Option Description

Response Object Name The output of the object for the logical
management operation.

4. Click Save Logical Management Operation.

Adding attributes to logical management operations
You can add attributes to a logical management operation to identify the specific
object field attributes the logical management operation data source and target use.
You can define the individual attribute entries for both input and output logical
management operation invocations.

About this task

Input object attributes identify the data that the process management product
passes to the integration module. Output object attributes identify the data that the
integration module returns. Only the respective attributes of the selected source
and response objects are available for field selections. If you have not defined
either a source or response object, all object attributes are available for selection.

Procedure
1. In the Logical Management Applications application, select the logical

management operation for which you want to add an attribute.
2. In the Attributes for LMO window, click New Row.
3. Enter a value in the Name field.
4. Optional: Clear the Input check box to indicate that the attribute is for the

output of a logical management operation invocation.
5. Optional: Clear the Required check box to indicate the field attribute is not

required in the logical management operation invocation.

Launch in Context feature
You use the Launch in Context application to create and modify launch entry
records which open an external application in the same or a different browser
session. You can open applications independently or as part of an application
integration scenario.

The launch entry record can utilize the following options in the Application
Designer to open an external application:
v Action menu items
v Hyperlinks
v Buttons

You use the Launch in Context application to create and update launch entries. A
launch entry defines a URL that opens a console for an external application. The
launch entry can pass data, referred to as context, from the application to the
external console. You can configure a console URL for any application with a
web-based console. Additionally, you can configure console URLs for consoles that
use Java™ Web Start. You cannot use a launch entry to open applications that are
not enabled for the web. You can configure a launch point from any application.

332 Integrating Data With External Applications

Preparation of the external application
Most external applications have a web-based console that you can open from a
URL in a web browser. The launch-in-context feature supports the web application
(servlet or JSP), portal, and Java Web Start console types.

To perform a navigation, the external application console must support the
land-in-context capability that accepts data that is passed to it in a URL. The
external console uses the URL to open a window with the data that was passed in
the URL.

If the external application does not have a land-in-context capability, the
launch-in-context feature can open a standard start page within the console,
without the contextual data. If the application supports single sign-on
authentication, application users are authenticated and directed to the external
console. If single-sign on authentication is not implemented, the external console
opens a login panel to authenticate the application user.

Launch entry URL into an external application
A launch entry URL value can contain substitution variables that use data from the
related business objects that you are viewing in the application.

For example, for a launch entry that is implemented in the Person application, you
can substitute the name value into the URL string by using the attribute name,
{attributename}. The following URL is a URL for the Person application that uses
the PERSONNAME attribute:

https://extsyshost:9045/tcWebUI/interactionhandler?actionId=viewPerson
&Person={PERSONNAME}

You can also provide an attribute from an object that is related to the main
business object by specifying the relationship name and the attribute name
{relationshipname.attributename}. The following URL includes a city attribute
from an address. Use this URL in the People application when the ADDRESS
object is related to a PERSON object with a relationship named ADDRESS:

https://extsyshost:9045/WebUI/interactionhandler?actionId=viewCity
&cityname={ADDRESS.CITY}

Use the {sourcetoken} and the {reportinghostname} values in a URL when you
want to launch to an operational management product console.

Launch entry URL into a product application
A launch entry URL value can contain attribute variables and a SQL Where clause
variable.

An external application can launch into the product, open a specific product
application, and search for specific business objects to display.

When launching into the product, the product sign on screen is presented. After
the user signs on, the specified application opens. Optionally, you can include the
username and password in the URL to bypass the sign on screen but only if a
Secure Socket Layer (SSL) is configured to secure HTTP access.

The URL to launch into the product has the following format:

Integrating data with external applications 333

http://<server>:<port>/<maximo>/ui/<product.jsp>?event=loadapp
&value=<appID>

The following example URL opens the Work Order Tracking application and
displays the work order with an ID of 1000

http://<server>:<port>/<maximo>/ui/<maximo.jsp>?event=loadapp
&value=<wotrack>&attrname1=<WONUM>&attrvalue1=<1000>:

The search for a record has similar behavior to the List tab in an application, where
the filter row has multiple values filled in across the columns. The names of the
attributes are the database names of the primary MBO for the application being
launched.

If advanced searching is required, you can add a SQL WHERE clause to the URL,
in the format used in the following example:

http://:<server>:<port>/maximo/ui/maximo.jsp?event=loadapp&value=wotrack
&sqlwhere=WONUM%3D1000

The sender must provide valid URLs. In the previous example, an invalid "="
value was converted to "%3D".

If a URL includes both attribute-type parameters and a SQL Where clause
parameter, the SQL Where clause parameter is used and the attribute-type
parameters are ignored.

Enabling launch-in-context
To open a browser window in an external application that can contain contextual
data, a user must be able to activate the launch in the source application. The user
must also have security rights to view the menu item or toolbar button. The target
application must be configured to accept the window request from a remote
application, and arrangements must be in place to secure the transaction.

Creating a launch entry
You can create a launch entry to open an external application in the same or in a
new browser session. Launch entry records create website-based links between
applications and external operational management products or websites.

Procedure
1. In the Launch in Context application, click New Launch Entry.
2. In the Launch Entry Name field, specify a launch entry identifier.
3. In the console URL field, specify the URL for a website or the console for an

operational management product that you want to open in a browser session.
4. In the Target Browser Window field, specify one of the following values:

v The _usecurrent value (default) opens an application or website in the
current browser session.

v The _blank value open an application or website in a new browser session.
5. Optional: If the target of the launch entry is a console for an operational

management product, specify its name and version in the OMP Product
Name and the OMP Version fields.

6. In the Launch Contexts table, click New Row.

334 Integrating Data With External Applications

7. In the Resource Object Name field, you can specify a business object that
restricts use of the launch entry record to applications that support this object.
A launch entry can support single or multiple business objects. No restrictions
apply to the use of the launch entry if you do not select any business objects.
Launch entry classification value attributes. The classification value can restrict
the displayed launch entries. Multiple business objects support the
classification attribute. The classification restriction is implemented at run time
when you use system conditions. Out of box conditions are available to
control your launch entry behavior. You also can create your own conditions.
For example, if you specify PERSON in this field, you can use the launch entry
only in the People application. You can use the launch entry record in any
application when the field value is null.

8. In the Resource Classification field, if classification attributes are defined for
the specified resource object, you can select attributes that restrict the display
of launch entries. Many business objects support classification attributes. The
classification restriction is implemented at run-time when you use system
conditions. Predefined conditions are available to control launch entry
behavior. You also can create your own conditions.

9. Select the Include Child Classifications check box to include resource
classifications for child objects in the launch entry record.

10. Click Save Launch Entry.

What to do next

You can associate launch entry records with signature options in the Application
Designer application. These associations define and control the menu actions for
launch entry use.

Properties specific to operational management products:

When you create a launch entry record, some properties are specifically for use
with operational management products.

When you associate an operational management product to a launch entry, the
framework searches for the product name on the operational management product
servers in the database that manages the configuration item. If you provide the
operational management product version, the framework searches for the specified
version. The server data populates the {sourcetoken} and {reportinghostname}
variables in the launch URL.

To determine what configuration item you are working with, the integration
framework looks for a configuration item globally unique identifier (CIGUID)
attribute in the business object that you are viewing. If you are viewing the
configuration item business object, the globally unique identifier (GUID) attribute
is used instead.

The source token is an attribute of the configuration item and operational
management product server relationship. The operational management product
console accepts the source token as the configuration item identifier. When you
include a {sourcetoken} in the launch URL, the framework replaces it with the
corresponding source token for the selected operational management product
server.

The reporting host name is the host name of the selected operational management
product server. When the {reportinghostname} value is in the URL for the launch

Integrating data with external applications 335

entry, the framework replaces it with the host name of the selected operational
management product. The source token and host name information is loaded from
the discovery engine. If the host name information is not loaded from the
discovery engine, you must add the operational management product server
information to your database.

Configuring a signature option for a launch point
When you create a signature option for a launch point, it becomes available to use
within the user interface controls.

Procedure
1. In the Application Designer, select the application where you want to configure

a launch point.
2. Select the Add/Modify Signature Options action.
3. In the Add/Modify Signature Options window, click New Row.
4. Specify values in the Option and Description fields.
5. In the Advanced Signature Options table, select the Associate to Launch Entry

To Enable The Launch in Context option. To access the Advanced Signature
Options table, scroll to the end of the Add/Modify Signature Options window,
and click Maximize to show the available options.

6. In the Launch Entry Name field, specify the name for the launch entry.
7. Click OK to return to the Application Designer.
8. Click Save Application Definition to commit the modifications to the

application to the database.

Adding a launch point to an application menu
After you configure a signature option for a launch point, you can add the option
to an application menu. The procedure is similar for adding the launch point to an
action or to a toolbar menu.

Procedure
1. In the Application Designer, choose one of the following actions:

v Add/Modify Select Action Menu

v Add/Modify Toolbar Menu

2. Click New Row.
3. In the Element Type field, specify the OPTION value.
4. In the Key Value field, specify the name of the signature option that you

configured for the launch point.
5. In the Position field, specify a number to indicate the relative position of the

item in the menu.
6. In the Tabs field, select one of the following values:

v Select the MAIN value if the launch URL contains substitution variables.
v Select the ALL value if the launch URL does not contain substitution

variables.
7. Specify values in other, optional fields as appropriate.
8. Click OK to return to the Application Designer.
9. Click Save Application Definition to commit the modifications to the

application to the database.

336 Integrating Data With External Applications

What to do next

Before users can see the new menu item or toolbar button, you must grant user
and group access privileges to it. Grant the privileges in the Options section of the
Applications tab in the Security Groups application.

Adding a button as a launch point
To add a button to an application that acts as a launch point, configure a button to
use the signature option for the launch point.

Procedure
1. In the Application Designer, click Control Palette.
2. Drag a push button control to the application workspace.
3. Open the Properties window for the push button control.
4. In the Label field, specify the name that you want to appear on the button.
5. In the Event field, specify the name of the signature option.
6. Click OK to return to the Application Designer.
7. Click Save Application Definition to commit the modifications to the

application to the database.

Adding a condition to a launch point
You can create a condition and then associate the condition with the signature
option for the launch point. When you associate a condition with a signature
option, the user interface behavior is changed based on the condition and the data
that is being viewed.

Procedure
1. In the Security Groups application, select the group for which you want to

apply a condition.
2. In the Application tab, select the application for which you want to apply the

condition.
3. In the Options table, select the condition value that you created.
4. Click Save Group.

Signature option conditions:

You can apply conditions to control the user interface behavior based on the data
that is being viewed.

The integration framework provides a predefined condition class,
psdi.iface.app.launch.LaunchCICondition, to hide launch entry menu items when
the current object classification does not match the launch entry classification
value. This condition applies to any object that has a classification attribute.

Launch entry menu items can also be hidden when the operational management
product that is configured on the launch entry does not manage the configuration
item. This condition applies to launch entries that you associate with a
configuration item object or actual configuration item object.

You can configure a condition to use the predefined condition class. You also can
configure a condition to implement a custom condition using the Conditional
Expression Manager application.

Integrating data with external applications 337

The launch point is available from the application, regardless of the data that is
being viewed, when you do not use a condition. The data you view is restricted to
the signature option security settings for a user group. You also can configure your
security settings to hide a launch point, based on set group access privileges.

If you use a Java condition class, you must change the condition EXPRESSION
attribute to the name of the launch entry. The Java class can identify which launch
entry is executed. The expression attribute value must be an exact match to the
name of the launch entry and values are case-sensitive.

Integration reference information
Reference information includes a guide to the XML structures and schemas used
by the integration framework, the system properties you can set, and predefined
collaboration switches provided with applications.

Integration system properties
System properties define the behavior and characteristics of the integration
framework. To review or change integration framework properties, filter for the
properties in the System Properties application.

General integration properties

To see a list of general integration properties, specify mxe.int as a filter term in the
System Properties application. For Boolean properties (true/false), a value of 0
means false, and a value of 1 means true.

Table 47. General integration properties

Property Description Default value

mxe.int.containerdeploy Deploy web services to the application server
container. When set to 0 (false), web services are
deployed to the product container.

0

mxe.int.credentialmapperclassname Credential mapper classname is a class file that can be
used for mapping credential information when an
integration module is implemented.

mxe.int.genboolasbool Generate Boolean as schema Boolean. 1

mxe.int.globaldir Specifies the Integration Global Directory. 1

mxe.int.queueusercachesize Number of users that are cached for inbound queue
messages.

10

mxe.int.resolveschema Resolves all schema includes to contain inline schema
definition.

1

mxe.int.servicedeployer Web services deployer class is a custom Java class for
web service deployment when the default deployer
class is not used.

mxe.int.uddiinqurl Represents the integration UDDI registry inquiry
URL.

mxe.int.uddiname Represents the integration UDDI registry user ID.

mxe.int.uddipassword Integration UDDI registry password.

mxe.int.uddipuburl Integration UDDI registry publish URL.

338 Integrating Data With External Applications

Table 47. General integration properties (continued)

Property Description Default value

mxe.int.validatedbupdates Validates the database updates completed by
integration. When set to 1 (true), the deletion of
business objects, attributes, indexes, and relationships
by a user through the Database configuration
application are validated against integration content.
The validation ensures that the data that is deleted is
not referenced by an integration component. If a
reference exists, the user is not able to complete the
delete action.

1

mxe.int.validatemmpackage Validates the Migration Manager database updates by
integration.

0

mxe.int.verifywebappurl Verifies web application URL when schema files are
generating.

1

mxe.int.webappurl Represents the integration web application URL.
Configure this property to contain the correct host
name and port number.

http://localhost:9998/meaweb

mxe.int.wsdlcurrentschema Shows the current schema definition in WSDL. 1

mxe.int.wsdlincludesschema Includes the schema directly in the WSDL. 1

mxe.int.wsdlnamespace Represents the integration WSDL namespace. http://www.ibm.com/maximo/wsdl

mxe.int.xmlnamespace Represents the integration XML namespace. http://www.ibm.com/maximo

mxe.int.binarytext Converts a text value to base 64 encoded value. 10

mxe.int.defaultaction The default action for flat file import. AddChange

mxe.int.defaultoperation The default operation for the application export. Sync

mxe.int.dfltuser Represents the Integration default login user. mxintadm

mxe.int.doclink.maxfilesize Represents the maximum file size (MB) for
attachments that are included as part of an integration
message.

10

mxe.int.enabledatemillis Enables the dates with milliseconds part. 0

mxe.int.expupdatesender Updates the SENDERSYSID field on the primary
object during data export.

0

mxe.int.extracttrycount The File Extract Retry Count is the number of times
an error message is retried during data import when
using file-based error management.

0

mxe.int.flatfiledelimiter Integration flat file text delimiter is the default
delimiter value that is used for application import
enablement and for data import.

,

mxe.int.flatfilenewline Retains new line character in flat files. For fields, such
as descriptions, that can contain new line characters,
the characters are retained in the integration messages
when the property value is 1 (true).

0

mxe.int.interactiveimport Performs the application import as interactive. 0

mxe.int.keyresponse Provides response content for inbound integration
messages for all operations. When set to 1 (true),
response content, that includes the primary object key
values, is provided for all service operations. When
set to 0 (false), response content is provided for Query
and Create operations only.

1

mxe.int.maxextractdocs Represents the number of error documents that are
written to each temporary file when an extract file is
building .

1000

mxe.int.mdbdelay Represents the wait time in milliseconds before a
message from the error queue is processed.

-1

Integrating data with external applications 339

Table 47. General integration properties (continued)

Property Description Default value

mxe.int.propagateuser Propagate authenticated user through the inbound
queue. When set to 1 (true), the user of the integration
message is saved with the queue message and used
during the processing of the message because it is
processed from the queue to the business objects.

0

mxe.int.savemessage Indicates the save JMS message. 0

mxe.int.setclobasaln Controls the truncation of characters that are sent to
interface tables.

0

mxe.int.textqualifier The flat file text qualifier is the default text qualifier
value in application import enablement and in data
import.

"

mxe.int.updatecoafromglcomp Updates the Chart of Accounts that contain an
identified component. When set to 1 (true), processing
of inbound GL component data initiates related
updates to any chart of account data that references
the GL component.

1

mxe.int.usescientific Uses scientific notation for double values. 1

mxe.int.validatexmltext Validates XML element value for invalid XML
characters. When set to 1 (true), an outbound message
is validated to ensure that all data in the message
uses valid XML characters. If messages contains
invalid characters, the operation stops and no
outbound message is delivered.

0

mxe.int.whereclausepolicy Sets the where-clause policy for an integration query. parse

mxe.int.adminfromemail The email address FROM integration administration,
which is used as the From email address when
integration initiates an email. Must be a valid email
address format, such as from@example.com.

mxe.int.admintoemail The email address TO integration administration,
which is used as the To email address when
integration initiates an email. Must be a valid email
address format, such as to@example.com. You can
provide more than one email address in a
comma-separated list.

Table 48. General integration properties.
Property Description Default value Who can edit property?

mxe.int.containerdeploy
Deploy web services to the application server
container. When set to 0 (false), web services are
deployed to the product container.

0 Global administrator

mxe.int.credentialmapperclassname
Credential mapper classname is a class file that
can be used for mapping credential information
when an integration module is implemented.

Global administrator

mxe.int.genboolasbool
Generate Boolean as schema Boolean.

1 Global administrator

mxe.int.globaldir
Specifies the Integration Global Directory.

1 Global administrator

mxe.int.queueusercachesize
Number of users that are cached for inbound
queue messages.

10 Global administrator

mxe.int.resolveschema
Resolves all schema includes to contain inline
schema definition.

1 Global administrator

mxe.int.servicedeployer
Web services deployer class is a custom Java class
for web service deployment when the default
deployer class is not used.

Global administrator

340 Integrating Data With External Applications

Table 48. General integration properties (continued).
Property Description Default value Who can edit property?

mxe.int.uddiinqurl
Represents the integration UDDI registry inquiry
URL.

Global administrator

mxe.int.uddiname
Represents the integration UDDI registry user ID.

Global administrator

mxe.int.uddipassword
Integration UDDI registry password.

Global administrator

mxe.int.uddipuburl
Integration UDDI registry publish URL.

Global administrator

mxe.int.validatedbupdates
Validates the database updates completed by
integration. When set to 1 (true), the deletion of
business objects, attributes, indexes, and
relationships by a user through the Database
configuration application are validated against
integration content. The validation ensures that
the data that is deleted is not referenced by an
integration component. If a reference exists, the
user is not able to complete the delete action.

1 Global administrator

mxe.int.verifywebappurl
Verifies web application URL when schema files
are generating.

1 Global administrator

mxe.int.webappurl
Represents the integration web application URL.
Configure this property to contain the correct
host name and port number.

http://localhost:9998/
meaweb

Global administrator

mxe.int.wsdlcurrentschema
Shows the current schema definition in WSDL.

1 Global administrator

mxe.int.wsdlincludesschema
Includes the schema directly in the WSDL.

1 Global administrator

mxe.int.wsdlnamespace
Represents the integration WSDL namespace.

http://www.ibm.com/maximo/
wsdl

Global administrator

mxe.int.xmlnamespace
Represents the integration XML namespace.

http://www.ibm.com/maximo Global administrator

mxe.int.binarytext
Converts a text value to base 64 encoded value.

10 Global administrator,
tenant administrator

mxe.int.defaultaction
The default action for flat file import.

AddChange Global administrator,
tenant administrator

mxe.int.defaultoperation
The default operation for the application export.

Sync Global administrator,
tenant administrator

mxe.int.dfltuser
Represents the Integration default login user.

mxintadm Global administrator,
tenant administrator

mxe.int.doclink.maxfilesize
Represents the maximum file size (MB) for
attachments that are included as part of an
integration message.

10 Global administrator,
tenant administrator

mxe.int.enabledatemillis
Enables the dates with milliseconds part.

0 Global administrator,
tenant administrator

mxe.int.expupdatesender
Updates the SENDERSYSID field on the primary
object during data export.

0 Global administrator,
tenant administrator

mxe.int.extracttrycount
The File Extract Retry Count is the number of
times an error message is retried during data
import when using file-based error management.

0 Global administrator,
tenant administrator

mxe.int.flatfiledelimiter
Integration flat file text delimiter is the default
delimiter value that is used for application import
enablement and for data import.

, Global administrator,
tenant administrator

Integrating data with external applications 341

Table 48. General integration properties (continued).
Property Description Default value Who can edit property?

mxe.int.flatfilenewline
Retains new line character in flat files. For fields,
such as descriptions, that can contain new line
characters, the characters are retained in the
integration messages when the property value is
1 (true).

0 Global administrator,
tenant administrator

mxe.int.interactiveimport
Performs the application import as interactive.

0 Global administrator,
tenant administrator

mxe.int.keyresponse
Provides response content for inbound integration
messages for all operations. When set to 1 (true),
response content, that includes the primary object
key values, is provided for all service operations.
When set to 0 (false), response content is
provided for Query and Create operations only.

1 Global administrator,
tenant administrator

mxe.int.maxextractdocs
Represents the number of error documents that
are written to each temporary file when an
extract file is building .

1000 Global administrator,
tenant administrator

mxe.int.mdbdelay
Represents the wait time in milliseconds before a
message from the error queue is processed.

-1 Global administrator,
tenant administrator

mxe.int.propagateuser
Propagate authenticated user through the
inbound queue. When set to 1 (true), the user of
the integration message is saved with the queue
message and used during the processing of the
message because it is processed from the queue
to the business objects.

0 Global administrator,
tenant administrator

mxe.int.savemessage
Indicates the save JMS message.

0 Global administrator,
tenant administrator

mxe.int.setclobasaln
Controls the truncation of characters that are sent
to interface tables.

0 Global administrator,
tenant administrator

mxe.int.textqualifier
The flat file text qualifier is the default text
qualifier value in application import enablement
and in data import.

" Global administrator,
tenant administrator

mxe.int.updatecoafromglcomp
Updates the Chart of Accounts that contain an
identified component. When set to 1 (true),
processing of inbound GL component data
initiates related updates to any chart of account
data that references the GL component.

1 Global administrator,
tenant administrator

mxe.int.usescientific
Uses scientific notation for double values.

1 Global administrator,
tenant administrator

mxe.int.validatexmltext
Validates XML element value for invalid XML
characters. When set to 1 (true), an outbound
message is validated to ensure that all data in the
message uses valid XML characters. If messages
contains invalid characters, the operation stops
and no outbound message is delivered.

0 Global administrator,
tenant administrator

mxe.int.whereclausepolicy
Sets the where-clause policy for an integration
query.

parse Global administrator,
tenant administrator

mxe.int.adminfromemail
The email address FROM integration
administration, which is used as the From email
address when integration initiates an email. Must
be a valid email address format, such as
from@example.com.

Tenant administrator

342 Integrating Data With External Applications

Table 48. General integration properties (continued).
Property Description Default value Who can edit property?

mxe.int.admintoemail
The email address TO integration administration,
which is used as the To email address when
integration initiates an email. Must be a valid
email address format, such as to@example.com.
You can provide more than one email address in
a comma-separated list.

Tenant administrator

REST integration properties

To see a list of REST API integration properties, specify mxe.rest as a filter term in
the System Properties application. For Boolean properties (true/false), a value of 0
means false, and a value of 1 means true.

Table 49. REST API integration properties

Property Description Default value

mxe.rest.format.json.mimetypes The REST supported mime types
for JSON.

application/json

mxe.rest.format.xml.mimetypes The REST supported mime types
for JSON.

application/xml,text/xml

mxe.rest.handler.mbo The REST MBO resource handler. com.ibm.tivoli.maximo.rest.
MboResourceRequestHandler

mxe.rest.handler.os The REST object structure
resource handler.

com.ibm.tivoli.maximo.rest.
OSResourceRequestHandler

mxe.rest.handler.ss The REST standard service
resource handler.

com.ibm.tivoli.maximo.rest.
MaxServiceResourceRequestHandler

mxe.rest.serializer.mbo.
imglib.image

The REST serializer for the
imagelib MBO for image format.

com.ibm.tivoli.maximo.rest.
ImageLibSerializer

mxe.rest.serializer.mbo.json The REST serializer for MBO for
JSON format.

com.ibm.tivoli.maximo.rest.
MboJSONSerializer

mxe.rest.serializer.mbo.xml The REST serializer for MBO for
xml format.

com.ibm.tivoli.maximo.rest.
MboXMLSerializer

mxe.rest.serializer.os.json The REST serializer for object
structures for JSON format.

com.ibm.tivoli.maximo.rest.
OSJSONSerializer

mxe.rest.serializer.os.xml The REST serializer for object
structures for xml formats.

com.ibm.tivoli.maximo.rest.
OSXMLSerializer

mxe.rest.serializer.ss.json The REST serializer for standard
services for JSON format.

com.ibm.tivoli.maximo.rest.
ServiceMethodResponseJSONSerializer

mxe.rest.serializer.ss.xml The REST serializer for standard
services for xml format.

com.ibm.tivoli.maximo.rest.
ServiceMethodResponseXMLSerializer

mxe.rest.webappurl Token Authentication on Web
Application URL.

mxe.rest.mbo.blockaccess Blocks access to the
comma-separated list of MBOs.

mxe.rest.mbo.defaultformat The REST default format for all
MBOs.

xml

mxe.rest.mbo.imglib.defaultformat The REST default format for the
MBO imglib.

image

mxe.rest.os.blockaccess Blocks access to the separated list
of object structures.

10

mxe.rest.os.defaultformat The REST default format for all
object structures.

xml

mxe.rest.ss.defaultformat The REST default format for all
standard service response

xml

Integrating data with external applications 343

Table 49. REST API integration properties (continued)

Property Description Default value

mxe.rest.supportedformats The REST supported formats for
a response.

xmljsonimage

mxe.rest.whereclausepolicy Sets the where clause policy for
REST query.

parse

OSLC integration properties

To see a list of OSLC integration properties, specify mxe.oslc as a filter term in the
System Properties application. For Boolean properties (true/false), a value of 0
means false, and a value of 1 means true.

Table 50. OSLC integration properties

Property Description Default value

mxe.oslc.dfltconsumerversion The default OSLC version that the
consumer uses.

2

mxe.oslc.dfltversion The default OSLC version for an OSLC
provider.

2

mxe.oslc.enableprovider Enables the OSLC provider. 1

mxe.oslc.idleexpiry Indicates the idle expiry time. 300

mxe.oslc.webappurl The provider's public URL. http://localhost/maximo/oslc/

mxe.oslc.collectioncount Adds the total count in the OSLC
collection.

0

mxe.oslc.defaultep The default OSLC Endpoint. OSLCDEFAULT

mxe.oslc.defaultformat The default format for OSLC. oslcjson

mxe.oslc.errorresponse The OSLC Error Response Format. 1

mxe.oslc.preferproviderdesc Prefers OSLC provider description for
resource registry reconciled URLs

false

mxe.oslc.prefersmallpreview Prefers small preview for OSLC consumer. false

mxe.oslc.prettyjson Pretty printed JSON. 0

mxe.oslc.prettyrdf Pretty printed RDF. 0

mxe.oslc.prqueryep The Provider Registry Query Endpoint. PROVIDERREGISTRY

mxe.oslc.prcreateep Represents the Provider Registry Create
Endpoint.

Integration XML
Most integration XML messages are based on an object structure and an operation
that a channel or service performs. Standard services, however, do not support
object structures and predefined XML schemas are used to construct these XML
messages.

Overview
When you configure object structures, the integration framework specifies an
appropriate XML schema that defines the content and structure of integration
messages.

Message content

The following channels and services can be used for XML messages based on an
object structure:
v Invocation channel

344 Integrating Data With External Applications

v Publish channel
v Enterprise service
v Object structure service

The following operations are supported:
v Create
v Delete
v Invoke
v Publish
v Query
v Sync
v Update

Operation values are case-sensitive.

Message structure

The standard format for an integration XML message begins with a root element
that contains an object structure element. The object structure element contains
elements for the primary object and its fields and for any child objects that are
defined for the object structure. The following example is based on the PERSON
object structure, where the primary object and its fields precede child objects and
their fields.
<?xml version="1.0" encoding="UTF-8"?>
<max:SyncMXPERSON xmlns:max="http://www.ibm.com/maximo"> (Root element)

<max:MXPERSONSet> (Sets the object structure element)
<max:PERSON> (Object element for primary object)

<max:PERSONID>Value</max:PERSONID> (Object field element)
<max:EMPLOYEETYPE>Value</max:EMPLOYEETYPE> (Object field element)

.

.

.
<max:PHONE> (Child object element)

<max:PHONENUM>Value</max:PHONENUM> (Child object field element)
<max:TYPE>Value</max:TYPE> (Child object field element)

</max:PHONE>
<max:EMAIL> (Child object element)

<max:EMAILADDRESS>New value to update</max:EMAILADDRESS>
<max:TYPE>Value</max:TYPE> (Child object field element)

</max:EMAIL>
.
.
.

</max:PERSON>
</max:MXPERSONSet>

</max:SyncMXPERSON>

The name of the root element is a concatenation of the operation specified for the
channel or service and the name of the object structure. In this example, the
SyncMXPERSON root element combines the Sync operation and the MXPERSON
object structure.

Each element can contain one or more attributes. In this example XML message,
the root element includes the namespace attribute.

Integrating data with external applications 345

Schema generation

To generate the schema and view the generated XML, filter for a specific record
and select the Generate Schema/View XML action in any of the following
applications:
v Enterprise Services
v Invocation Channels
v Object Structures
v Publish Channels
v Web Services Library

XML structure
A typical integration XML message has a root element, an object structure element,
and elements for the objects that are defined for the object structure. Object
elements contain elements for object fields and elements can contain one or more
attributes. Attribute names and values are case-sensitive.

Root element and attributes:

The root element of an XML message is based on an object structure and an
operation specified for the channel or service used for the communication. The root
element can contain one or more attributes.

The following table shows the attributes that can apply to root elements. Attribute
names and values are case-sensitive. All attributes are optional.

Attribute Description Type Applicable to

baselanguage The base language in which
the content values are
supplied.

string All input and output
operations

creationDateTime Date and time when the
content is generated.

dateTime All input and output
operations

maximoVersion The major version, minor
version, build, and
database build that is
generated for all published
XML.

MaximoVersionType All input and output
operations

messageID Unique identifier generated
for all messages.

string All input and output
operations

transLanguage The language in which the
values for
multilanguage-enabled
fields are supplied.

string All input and output
operations

346 Integrating Data With External Applications

Attribute Description Type Applicable to

event The origin of an outbound
XML message. Valid values
are:

v 0 (false), indicates that
the message is generated
by the data export
feature.

v 1 (true), indicates that the
message is generated by
an outbound integration
event listener (that is,
data entry in an
application).

eventType All output operations

uniqueResult Specifies whether a query
expects one record or
multiple records in a
response. If the value is 0,
or the attribute is not
specified, the query can
return multiple records. If
the value is 1, the query
can return a single record
only and, otherwise, an
error occurs.

Boolean Queries (input)

maxItems If a query can return
multiple records, this
attribute limits the number
of records to be returned at
one time. If this attribute is
not specified, the response
contains the entire result
set.

positiveInteger Queries (input)

rsStart Specifies the first record to
return in the response. If
not specified, the response
starts with the first record
in the result set. If the
number of results in the
result set is lower than the
rsStart value, the response
returns no records.

If a maxItems value is
specified, the response
returns the specified
number of records, starting
with rsStart value, if one
is set.

For example, if
maxItems=10 and rsStart is
not specified, the response
returns results 1 through
10. To receive results 11
through 20, resend the
query with rsStart=11.

integer Queries (input)

Integrating data with external applications 347

Attribute Description Type Applicable to

rsStart This value matches the
rsStart value in the
corresponding query.

If the query contains a
maxItems value, the rsStart
value in requests for
additional records is
rsStart + rsCount + 1.

If this attribute is not
specified, the response
starts with the first record
in the result set and
includes the number of
records specified by the
rsCount attribute.

integer Responses (output)

rsCount The number of records
returned in a message. If
the original query specifies
a maxItems value, the
rsStart value for the
subsequent request for
additional records is
rsStart + rsCount + 1.

integer Responses (output)

rsTotal The total number of records
in the result set. If the
query does not specify a
maxItems value, the rsTotal
value is the same as the
rsCount value.

integer Responses (output)

Object structure element:

The object structure element contains an element for the primary object and
elements for any child objects defined for the object structure. This element can
support multiple occurrences of the primary object and its child objects.

The primary object element contains elements for each object field. Child object
elements, containing elements for their object fields, are listed after the primary
object.

Object elements and attributes:

An object element contains elements for the object fields. Each object element can
contain one or more attributes.

The following table lists the attributes that can apply to an object element.
Attribute names and values are case-sensitive. All attributes are optional.

348 Integrating Data With External Applications

Attribute Description Type Applicable to

action This value is derived from
the action attribute of the
primary object within the
message. For outbound
messages, this attribute is
for informational purposes
only.

For inbound messages, the
processing logic uses this
value only for the Sync
operation. For other
operations, this value is
ignored.

ProcessingActionType All input and output
operations

relationship Identifies the relationship
that the system uses to
retrieve the object using the
parent object.

string All input and output
operations

deleteForInsert Identifies a child object that
must be deleted before
reinserting. This attribute
applies only to inbound
messages where the
operation is Sync and the
action is Change.

string All input and output
operations

Related reference:
“Action attributes” on page 351
An action attribute is an optional attribute that specifies to the receiving system the
type of processing to perform on an XML message. Action attributes apply to
inbound XML messages that synchronize data, using the Sync operation, and to
outbound XML messages that use publish channels.

Object field elements and attributes:

If the same field is included in the key for both a parent object and a child object
in an object structure, the field is contained in the parent object only. Each object
field can include one or more attributes.

Changed field attribute:

A Boolean value can be set to 1 (True) in outbound XML messages to indicate that
the value in the field is changed. The changed attribute is not set in XML
generated by the data export feature.

The changed attribute is set in outbound XML messages only when the transaction
satisfies all of the following conditions:
v An outbound, event-based transaction creates the message.
v The Change action attribute or the Replace action attribute is set on the primary

object.
v The sending object structure has the same parent-child object relationship as the

receiving application.

In the following example, the Replace action attribute is set for the parent object
and the changed attribute is set to 1 for the ADDRESSLINE field.

Integrating data with external applications 349

<MXPERSON>
<PERSON action="Replace">

<PERSONID>123</PERSONID>
<ADDRESSLINE1 changed="1" >1 Main Street</ADDRESSLINE1>

For general ledger (GL) type fields, the changed attribute is always set on the
name element, which is GLDEBITACCT in the following example:
<GLDEBITACCT changed="1">

<VALUE>6600-800-SAF</VALUE>
<GLCOMP glorder="0">6600</GLCOMP>
<GLCOMP glorder="1">800</GLCOMP>
<GLCOMP glorder="2">SAF</GLCOMP>

</GLDEBITACCT>

General ledger field attribute:

The glorder attribute is set in the GLCOMP elements in fields that identify general
ledger (GL) accounts, such as a GLDEBITACCT field. Each GLCOMP element
contains part of the account number and the glorder attribute identifies how to
combine these elements to construct the GL value.

In outbound XML messages, the value of a general ledger type field, including
delimiters, is set in the VALUE child element within the field. The components of
the value, based on the database definition of the components, are included in
GLCOMP elements. The glorder attribute in each GLCOMP element identifies the
order of the component, starting from 0 (zero), to a maximum of 20. In the
following example, the account number has three GL components
<GLDEBITACCT>

<VALUE>6600-800-SAF</VALUE>
<GLCOMP glorder="0">6600</GLCOMP>
<GLCOMP glorder="1">800</GLCOMP>
<GLCOMP glorder="2">SAF</GLCOMP>

</GLBDEBITACCT>

Inbound XML messages can set a GL account number in the VALUE element or in
GLCOMP elements with associated glorder attributes. If the message includes
GLCOMP elements, the account number is recreated based on the delimiters
defined in the GLCONFIGURE table. If both VALUE and GLCOMP elements are
included in the message, the VALUE element is used and the GLCOMP elements
are ignored.

Translatable field attribute:

The langenabled attribute is set to 1 (true) on every field that can be translated in
outbound XML messages.

Synonym field attribute:

For outbound messages, fields that are associated with a synonym-type domain
specify the corresponding internal value using the maxvalue attribute. This value is
available for customization or exit processing as required. The attribute is
informational only, and is not used for inbound message processing.

In the following example, a maxvalue of NOLOT is set for the LOTTYPE field.

350 Integrating Data With External Applications

<MXITEM>
<ITEM>
<ITEMNUM>560-00</ITEMNUM>
<DESCRIPTION>Tubing, Copper-1 In ID X .030 In Wall Test
</DESCRIPTION>
<LOTTYPE maxvalue="NOLOT">NOLOT</LOTTYPE>

Encrypted field attribute:

When the data in a field, such as a password field, is encrypted, the Boolean
attribute, maxencrypted, is set to 1 (true). External systems use this value to
determine whether to apply a decryption process to the information in the field.

The following example uses the MXPERSUSER object structure to provide user
information, including a password, and the maxencrypted attribute is set on the
PASSWORD field in the MAXUSER object.
<MXPERUSER>
<PERSON action="Replace">
<PERSONID>123</PERSONID>
<MAXUSER>
<MAXUSERID>10</MAXUSERID>
<PASSWORD maxencrypted=”1”> dmFzdG8=</PASSWORD>
<MAXUSER>
<PERSON>
<MXPERUSER>

Action attributes:

An action attribute is an optional attribute that specifies to the receiving system the
type of processing to perform on an XML message. Action attributes apply to
inbound XML messages that synchronize data, using the Sync operation, and to
outbound XML messages that use publish channels.

The following description describes the processing for inbound messages using the
Sync operation. The external system must evaluate the action code that is provided
with outbound messages and determine the processing that is appropriate for that
external application.

Action attributes can apply to the content of the parent object and child objects in
an object structure. An action attribute applied to the parent object specifies the
overall processing action for parent and child records. Applied to a child object, an
action indicates processing that is specific to that record. An attribute provided for
a child object is evaluated only when the primary object has an action value of
Change. When the action for the primary object is not Change, actions on the child
object are ignored.

Business rules take precedence over action attributes. If a business rule prohibits an
action that is specified on an inbound XML message, an error occurs. For example,
an inbound transaction that attempts to update a closed purchase order generates
an error.

If an XML message contains multiple instances of an object structure, each instance
of the object structure can specify a different action attribute. In the following
example, the COMPANIES record has multiple child COMPCONTACT records,
and each instance has its own action attribute.
<MXVENDOR>

<COMPANIES action="Change">
<COMPANY>TEST4

<NAME>test</NAME>

Integrating data with external applications 351

<ADDRESS1>100 Main Str</ADDRESS1>
<COMPCONTACT action="Add">

<NAME>SMITH</NAME>
<TITLE>MANAGER</TITLE>

</COMPCONTACT>
<COMPCONTACT action="Change">

<NAME>JONES</NAME>
<TITLE>ENGINEER</TITLE>

</COMPCONTACT>
</COMPANY>

</COMPANIES>
</MXVENDOR>

The action attribute can have the following values which are case-sensitive:
v Add
v Delete
v Change
v Replace
v AddChange
v Null

Value Description

Add Add records to the database in the receiving
system.

Delete Delete records from the database in the
receiving system.

Change Update existing records in the database in
the receiving system.

Replace Add records or replace records in the
receiving system, depending on whether the
primary record exists in the database.

AddChange Add or update existing records in the
database in the receiving system.

Null Add records or replace records in the
receiving system, depending on whether the
primary record exists in the database.

Default action processing

When an inbound XML messages does not contain an action attribute, the message
is processed as follows:
v If the primary record does not exist in the database, the Add action is applied.
v If the primary record exists in the database, the Replace action is applied.

For a message sourced from a flat file or an interface table, you can provide an
action code for the primary object only. There is no support for providing action
codes for child objects.

Add action

The Add action adds records to the database in the receiving system.

For inbound transactions, an error occurs if the data already exists. If the Add
action is set on a parent object, the action extends to child objects and it is not

352 Integrating Data With External Applications

necessary to specify the action at the child object level. Outbound transactions
contain an Add action when the insert of an object generates the transaction.

Delete action

The Delete action deletes records from the database in the receiving system.

If the Delete action is set on a parent object, the action extends to child objects and
it is not necessary to specify the action at the child object level.

If the Delete action is set on the parent object in an outbound XML message that
does not include the child objects, the receiving system is responsible for
identifying and deleting child objects.

If the Delete action is set on the parent object in an inbound XML message, the
integration framework deletes the related child objects. If the parent object does
not exist in the database, no error is reported to the sending system.

Change action

The Change action updates existing records in the database in the receiving
system.

A Change action on the primary object in an XML message indicates that the
message contains one or more parent or child records that are added, changed, or
deleted. The message always contains the parent of any child record to be updated,
even if the parent is unchanged.

The Change action on the primary object is the only case where you can supply an
action for a child object. When the primary object in an inbound or outbound XML
message contains a Change action, each child object in the message can contain
one of the following actions.

Action attribute of child object Processing action

Add Add the child record. If the child record
already exists, an error is generated.

Delete Delete the child record. If the child record
does not exist, an error is generated.

Change Update the child record. If the child record
already exists, an error is generated.

Null or no action specified If the child record exists, update it. If the
child record does not exist, add it.

Replace action

The Replace action updates existing records in the database in the receiving
system.

A Replace action on the primary object in an XML message indicates that the
message contains a complete set of objects that represents the result of additions,
changes, and deletions to the object structure. These objects replace the existing
database records and any record that is not referenced in the XML message is
deleted.

Integrating data with external applications 353

For outbound processing, the Replace action is always used, not the Change action.

For inbound processing, any existing child record that is not explicitly mentioned
in the message is deleted. External systems must also delete any child records that
are not included in the XML message.

The Replace action can apply only to the primary object in an XML message. If a
child record in an inbound XML message contains a Replace action when the
primary object contains a Change action, the message is not processed. If a child
level record contains a Replace action when the parent contains any action other
than Change, the action on the child record is ignored.

AddChange action

The AddChange action adds or updates existing records in the database in the
receiving system. The AddChange action is like the Replace action except that the
AddChange action does not apply to child objects.

An AddChange action on the primary object adds the primary record and all the
sub-records that are specfied in the message, if the primary record does not exist in
the database. If the primary record does exist, it is updated and any child record
that is included in the message. Existing child records that are not specified in the
inbound message are not deleted.

The AddChange action is useful when an object structure includes elements that
do not exist in the external system. For example, an external system can maintain
vendor information but contact information is stored only in the database. An
inbound message with a vendor record that has an action value of NULL deletes
the contact information in the database. If the action is set to AddChange for this
transaction, the vendor information is updated and the contact information
remains the same.

Comparison of Change, Replace, and AddChange actions

The Change, Replace, and AddChange actions differ in the information that they
include in the XML message and the processing that they require of the receiving
system.

Action attribute combinations

The following table shows the combinations of action attributes you can include on
primary and child records.

Child
Record Add Delete Change Replace AddChange No Value Remarks

Primary
Record

Add N/A N/A N/A N/A N/A N/A All child
values
ignored

Delete N/A N/A N/A N/A N/A N/A All child
values
ignored

354 Integrating Data With External Applications

Child
Record Add Delete Change Replace AddChange No Value Remarks

Change Yes Yes Yes No No Yes (insert,
update)

Replace and
AddChange
not allowed
at child level

Replace N/A N/A N/A N/A N/A N/A All child
values
ignored

AddChange N/A N/A N/A N/A N/A N/A All child
values
ignored

No value N/A N/A N/A N/A N/A N/A All child
values
ignored

Related reference:
“Object elements and attributes” on page 348
An object element contains elements for the object fields. Each object element can
contain one or more attributes.

Field value types:

The integration framework specifies the processing behavior for the different data
types used to format field values.

Boolean columns

In inbound transactions, an element that represents a Boolean field must contain a
value of 0 (false) or 1 (true). If the element does not contain a 0 or a 1, an error is
generated. If the XML does not include an element for a Boolean field, the
corresponding database value is updated with the default value (0 or 1) that is
defined for that column.

Encrypted fields

In inbound transactions, the attribute that represents the maxencrypted field must
contain a value of 0 (false) or 1 (true). When the attribute value is 1, a decryption
process is applied to the received data. When the attribute value is 0, the received
data is not decrypted.

If the attribute does not contain a 0 or a 1, the received data is not decrypted. If
the XML field does not include an element for an encrypted field, the received data
is not decrypted.

Character encoding

The integration XML uses UTF-8 encoding. If an inbound transaction specifies any
other encoding, the entire message must use that encoding. If an error is
encountered during the processing of an inbound transaction that uses encoding
other than UTF-8, the entire error XML that is written is encoded as UTF-8.
<?xml version="1.0" encoding="ISO-8859-2"?>

Integrating data with external applications 355

Date format

The integration XML supports the following ISO 8601 date format:
2011-04-06T10:11:58-05:00

Null columns

If an element in an inbound transaction contains no value, the corresponding
database column is updated with a null value. If the XML does not include an
element for a particular field, that field is not updated in the database.

For inbound data that is sourced from a flat file or an interface table, you can set a
field to null by providing ~NULL~ for the field value in the flat file or interface
table. Integration processing creates an empty tag in the corresponding XML
message for any ~NULL~ values that are provided. This feature does not support
numeric or date fields from an interface table source.

Number format

Regardless of the locale setting of the application server or the database, all
decimal fields must use a period (.) as the decimal placeholder. Do not format
numbers to the left of the placeholder. This format applies to inbound and
outbound data.

$1,738,593.64 must be in the following format: 1738593.64

Integration XML schemas
XML schemas for channels and services, excluding standard services, are based on
the configuration of the objects that are included in the object structure. You can
generate schemas in the integration applications.

XML schemas overview:

An integration framework schema includes a predefined schema component for
metadata as well as schema components based on configured objects, object
structures, and standard services

Schemas can be generated to support XML-based integration scenarios where the
following components are used:
v Object structure service
v Publish channel
v Invocation channel
v Enterprise service
v Standard service

Key fields

XML schema annotation identifies the key fields for a service or channel from the
object structure definition and the data dictionary definitions for the corresponding
object.

In the following example, the ITEMNUM element is identified as a key field in the
schema for the MXITEM object structure.

356 Integrating Data With External Applications

<xsd:element name="ITEMNUM" minOccurs="0" type="MXString">
<xsd:annotation>

<xsd:documentation>ITEMNUM is a key field</xsd:documentation>
</xsd:annotation>

</xsd:element>

XML validation

Inbound and outbound XML transactions are not validated against the
corresponding XML schema. Integration business rules apply to inbound data
regardless of schema validation. For object structure and enterprise services, the
integration must comply with the schema format at the point where the message is
processed by the object structure layer.

Namespace property

You can change the designation of the XML namespace by updating the
mxe.int.xmlnamespace property in the System Properties application. The default
namespace property value is http://www.ibm.com/maximo If you change the
namespace property, the MXMeta.xsd file is regenerated. This file contains the
metadata schema information that is used to build all other schemas. The
integration framework validates the namespace provided with inbound XML
messages.

Schema generation

Whenever you change an object structure or the data dictionary, you must
regenerate the affected schemas. You must also regenerate the schemas after the
following changes:
v Making a database field required or optional
v Changing the data type of a database field
v Adding or removing fields from an object structure
v Changing the structure of an object structure

Schemas are automatically generated when you deploy a web service.

You can manually generate schemas by selecting a record and selecting the
Generate Schema/View XML action in the following applications:
v Enterprise Services
v Invocation Channels
v Object Structures
v Publish Channels
v Web Services Library

Schema directory and files

Generated schema files are located in the relevant subdirectories in the schema
directory on the server.

Group Subdirectory Description

Metadata <root>/schema/common/meta Metadata schema file,
MXMeta.xsd

Integrating data with external applications 357

Group Subdirectory Description

Object Structure <root>/schema/common/mos Object structure schema files

Object <root>/schema/common/mbo Object schema files

Service <root>/schema/service Enterprise service and object
structure service schema files

Standard service <root>/schema/service/ss Standard service schema files

Schema structures:

Schema structures include the predefined Metadata schema component and
components for objects, object structures, services and standard services, all of
which are generated at the time of schema creation

Metadata schema:

The MXMeta.xsd file contains the metadata information that is used to build all
other schemas. Do not modify the MXMeta.xsd file because changes can result in
incorrect schemas and issues with web services. The system regenerates this
schema when someone changes the Namespace property.

In addition to data content, the metadata schema file includes the following
additional information about messages:
v Attribute groups
v Content types
v Query data types
v Supporting data types

Attribute groups

The following table lists attributes by group.

Group Attributes Applies to

CommonContentGroup v baseLanguage

v creationDateTime

v maximoversion

v messageID

v transLanguage

The root element of all input and
output schema types.

ObjectStructurePropertyGroup v action

v relationship

v deleteForInsert

The object element of all input and
output schema types.

PublishingContentGroup v event The root element of all output
schema types.

QueryContentGroup v maxItems

v rsStart

v uniqueResult

The root element of all query input
schema types.

358 Integrating Data With External Applications

Group Attributes Applies to

ResponseContentGroup v rsCount

v rsStart

v rsTotal

The root element of all response
output schema types.

Content types

The following table lists the content types in the metadata schema.

Type Description Attributes

MaximoVersionType Concatenated string that identifies:

v major version

v minor version

v build

v database build

Identifies software version

MXBooleanType Extension of integer changed

MXDateTimeType Extension of dateTime changed

MXDomainType Extension of string; identifies the
corresponding Maxvalue for a
domain value.

changed

maxvalue

MXDoubleType Extension of double changed

MXFloatType Extension of float changed

MXGLAccountType Complex type with 2 values, VALUE
and GLCOMP; identifies individual
GL components and their sequential
order for an account.

changed

MXGLComponentType Extension of string; identifies GL
component sequential order within
the chart of accounts structure.

glorder

MXIntType Extension of integer changed

MLLangStringType Extension of MXString changed

languageEnabled

MXLongType Extension of long changed

MXStringType Extension of string changed

Query types

The following table lists the query types in the metadata schema.

Type Description Attribute

MXBooleanQueryType Extension of integer operator

MXDateTimeQueryType Extension of dateTime operator

MXDomainQueryType Extension of string operator

maxvalue

MXDoubleQueryType Extension of double operator

Integrating data with external applications 359

Type Description Attribute

MXFloatQueryType Extension of float operator

MXGLAccountQueryType Complex type with a value of
VALUE

operator

MXGLComponentQueryType Extension of string operator

MXIntQueryType Extension of integer operator

MXLongQueryType Extension of long operator

MXStringQueryType Extension of string operator

Data types

The following table lists the data types in the metadata schema.

Type Description Restricted Values

BooleanType Indicates whether the result of a
logical test is true or false.

v 0 (false)

v 1 (true)

ChangeIndicatorType Indicates whether a field has a new
value.

Applies only to object structures
generated by an event.

1 (true)

EventType Indicates whether a published object
structure is the result of an event. If
the value is 1, the published structure
is the result of an event.

EventType is an extension of
BooleanType.

v 0 (false)

v 1 (true)

ProcessingActionType Processing actions that the
integration services support.

v Add

v Change

v Replace

v Delete

v AddChange

QueryOperatorType Identifies the Query by Example
action to be performed on the
corresponding field.

v =

v !=

v <

v <=

v >

v >=

v SW

v EW

Object structure schemas:

Object structure schemas define the content of an object structure. Each object
structure has its own schema that includes all of the persistent and nonpersistent
fields that are defined for each object in the structure. Object structure schemas are
used to define input and output types and are not used directly as input or output
for any service.

360 Integrating Data With External Applications

File names and location

The naming convention for object structure schemas is the object structure name,
for example, MXPERSON.xsd. All object structure schemas include the MXMeta.xsd
schema file. The generated schemas are located in the schema/common/mos directory.

Schema generation

When you generate the following components, the object structure schemas are
regenerated:
v The object structure schema by using an action in the Object Structures

application
v The enterprise service schema, where the object structure is referenced by the

service
v The publish channel schema, where the object structure is referenced by the

channel

Schema object structure content

An object structure schema has the following elements:
v Object
v Object set
v Object query

For example, the schema for the MXPERSON object structure has the following
elements:

Element Element name Type

Object MXPERSON MXPERSONType

Object set MXPERSONSet MXPERSONSetType

Object query MXPERSONQuery MXPERSONQueryType

Schema object content

The object element has the following content:
v The MXPERSON element has a type of MXPERSONType.
v The MXPERSONType is a complex type and has the PERSON element, which

has a type of MXPERSON_PERSONType.
v The complex type MXPERSON_PERSONType has elements for all the

configured attributes of the PERSON object and elements for the child objects in
the object structure.

v Additional objects in the schema have a corresponding complex type, such as
the MXPERSON_PERSONType, that defines the PERSON object.

Element Type

PERSON (primary object) MXPERSON_PERSONType

PHONE (child object) MXPERSON_PHONEType

EMAIL (child object) MXPERSON_EMAILType

SMS (child object) MXPERSON_SMSType

Integrating data with external applications 361

The following example shows the structure of the corresponding XML:
<MXPERSON>

<PERSON>
<PHONE>
</PHONE>

.

.

.
<EMAIL>
</EMAIL>

.

.

.
<SMS>
</SMS>

.

.

.
</PERSON>

</MXPERSON>

Object set content

For the MXPERSON example, the MXPERSONSet element replaces the
MXPERSON element and MXPERSONSetType replaces the complex type
MXPERSONType. Everything else remains the same. The set element acts as a
wrapper for multiple occurrences of the primary object (MXPERSON) and its child
objects.

Object query content

You can use query elements only within the context of a service level schema.

The following content format is in the object query element:
v The MXPERSONQuery element is of type MXPERSONQueryType.
v The MXPERSONQueryType is a complex type and has elements for all the

configured attributes of the primary object (PERSON) of the object structure.

The object query and the object set differ in the following ways:
v The query element includes only the primary object of the object structure.
v The query element does not include nonpersistent columns.
v The query element can include two occurrences of the elements to support a

query on a range, such as a date range.

Because the query includes only the top object of the structure, it is not possible,
for example, to query for a person by phone number. The phone number exists in
the child PHONE object.

Object schemas:

Object schemas define the content of objects. Each object has a distinct schema,
which includes all the persistent fields for a persistent object and all nonpersistent
fields defined for a nonpersistent object. Object schemas are used to define input
and output types and are not used directly as input or output for any service.

362 Integrating Data With External Applications

File names and location

The naming convention for object schemas is the object name, for example,
PERSON.xsd and the files are located in the schema/common/mbo directory.

Schema generation

Object schema files are generated when you generate the following components:
v An object structure schema that contains the object
v An object structure service or enterprise service schema that references an object

structure that includes the object
v A standard service schema that contains the object

All object schemas include the MXMeta.xsd schema file.

Schema content

The schema has the following elements (using MXPERSON as an example)

Element Type Comments

PERSONMbo PERSONMboType This type contains one
instance of the PERSONMbo
element.

PERSONMboSet PERSONMboSetType This type contains multiple
instances of the
PERSONMbo element.

PERSONMboKey PERSONMboKeyType This type contains a single
instance of the PERSON
element that is
PERSONKeyType. The
PERSONKeyType contains
the attribute that is the
primary key of the PERSON
object, PERSONID.

If multiple attributes make
up the primary key of an
object, the objectKeyType
contains the attributes that
make up the primary key.

This element is included in
the response to a Create
operation.

Integrating data with external applications 363

Element Type Comments

PERSONMboKeySet PERSONMboKeySetType This type contains multiple
instances of the PERSON
element that is
PERSONKeyType.

The PERSONKeyType
contains the attribute that is
the primary key of the
PERSON object, PERSONID.

If multiple attributes make
up the primary key of an
object, the objectKeyType
contains the attributes that
make up the primary key.

This element is included in
the response of a Create
operation.

PERSONMboQuery PERSONMboQueryType This type contains two
instances of the PERSON
element. Two instances allow
a query to specify a range,
for example, From Date and
To Date.

Multi-noun messages:

An XML message can contain multiple nouns.
<MXPERSON>

<MXPERSONSET>
<PERSON>
.
.
<SMS>
</SMS>
</PERSON>
<PERSON>
.
.
<SMS>
</SMS>
</PERSON>

</MXPERSONSET>
</MXPERSON>

Service level schemas:

Service level schemas apply to enterprise services, object structure services, and
standard services. The same schema describes enterprise services and object
structure services. A different schema describes standard services.

Enterprise services, object structure services, and standard services use objects and
object structures as input and output for the operations they support. Multiple
services can perform the same operation using the same input and output.

364 Integrating Data With External Applications

Predefined input and output for publish channels and invocation channels are
used to implement these channels to invoke external services or to map to other
output formats.

File names and location

The naming convention for object structure schemas and enterprise services
schemas is application service name + Service, for example, PERSONService.xsd where
PERSON is the application service name.

The naming convention for service level schemas is object structure + Service, for
example, MXPERSONService.xsd.

The schema files are located in the /schema/service directory.

The schema files are located in the <root>/schema/common/service directory.

Schema generation

Predefined service-level schema files are not provided. When you deploy a web
service, a service-level schema file is generated for the associated object structure, if
one does not exist. You can also generate a service-level schema by using an action
in the Web Services Library application

All service level schemas include the metadata schema file and the applicable
object structure and object schema files.

Schema content

One schema file is generated for each object structure with multiple data types
within each file. Each data type corresponds to each input and output operation
that can be deployed or processed as a service. Different services reuse the data
types in these schemas. No one service uses all the data types in a single schema.

Service-level schemas contain the following types, using the MXPERSON example:
v CreateMXPERSON
v CreateMXPERSONResponse
v DeleteMXPERSON
v InvokeMXPERSON
v InvokeMXPERSONResponse
v PublishMXPERSON
v QueryMXPERSON
v QueryMXPERSONResponse
v SyncMXPERSON
v UpdateMXPERSON

Standard service schemas input and output:

Standard services are provided by applications to perform specific operations on
objects and can expose multiple methods as web services. Standard services are
available only for methods that are properly annotated within the service.

The service-level schemas that are generated for standard services are used only by
the corresponding actions.

Integrating data with external applications 365

Object structure and enterprise service input and output:

The object structure contains the content for both object structure service and
enterprise service schemas. An object structure service supports all defined
operations but an enterprise service supports just one specific operation. Multiple
enterprise services must be created to support multiple operations even when they
reference the same object structure and use the same schema.

Object structure and enterprise service schemas identify the following:
v The input and output types for object structure and enterprise services
v The input and output of an invocation channel
v The output provided by a publish channel

All operations support an output type:
v The output for the Create, Update, Delete and Sync operations are the primary

object keys, the internal ID field and autokey values.
v The output for a Query operation is a result set of object structures.

The following examples, based on the MXPERSON object structure, describe the
content of object structure and enterprise services,

CreateMXPERSON element

The CreateMXPerson element has the following definitions:
v The CreateMXPERSON element is type CreateMXPERSONType.
v The CreateMXPERSONType has element MXPERSONSet, which is type

MXPERSONSetType. MXPERSONSet is derived from the object structure
schema.

v The MXPERSONSetType has elements for all the configured attributes of the
PERSON object and elements for the child objects (PHONE, EMAIL, and SMS)
that are defined in the object structure.

The definitions of the following elements and types are comparable to the
CreateMXPERSON element and type:

Element Type

UpdateMXPERSON UpdateMXPERSONType

SyncMXPERSON SyncMXPERSONType

InvokeMXPERSON InvokeMXPERSONType

InvokeMXPERSONResponse InvokeMXPERSONResponseType

Create MXPERSONResponse element

The CreateMXPERSONResponse element has the following definitions:
v The CreateMXPERSONResponse element is type

CreateMXPERSONResponseType.
v The CreateMXPERSONResponseType has element PERSONMboKeySet, which is

type PERSONMboKeySetType.
v The PERSONMboKeySetType has element PERSON, which is type

PERSONKeyType.

366 Integrating Data With External Applications

v The PERSONKeyType contains only the PERSONID attribute of the PERSON
object, which is the primary key of the PERSON object.

PublishMXPERSON element

The PublishMXPERSON element has the following definitions:
v The PublishMXPERSON element is type PublishMXPERSONType.
v The PublishMXPERSONType has element MXPERSONSet, which is type

MXPERSONSetType. MXPERSONSet is derived from the object structure
schema.

v MXPERSONSetType has elements for all the configured attributes of the
PERSON object and for the child objects ((PHONE, EMAIL, and SMS) defined in
the object structure.

The Publish element is like the Create element but uses an additional attribute,
event, that is defined in the PublishingContentGroup in the metadata schema.

DeleteMXPERSON element

The DeleteMXPERSON element has the following definitions:
v The DeleteMXPERSON element is type DeleteMXPERSONType.
v The DeleteMXPERSONType has element MXPERSONDelete, which is type

MXPERSONDeleteType.
v The MXPERSONDeleteType has elements for all the configured attributes of the

PERSON object. Delete supports only the top (primary) object of the object
structure.

QueryMXPERSON element

The QueryMXPERSON element has the following definitions:
v The QueryMXPERSON element is type QueryMXPERSONType.
v The QueryMXPERSONType has element MXPERSONQuery, which is type

MXPERSONQueryType.
v The MXPERSONQueryType has elements for all the configured attributes of the

PERSON object. Query supports only querying against the top (primary) object
of the object structure.

The Query element uses the additional attributes uniqueResults, maxItems, and
rsStart, which are defined in the QueryContentGroup in the metadata schema.

QueryMXPERSONResponse element

The QueryMXPERSONResponse element has the following definitions:
v The QueryMXPERSONResponse element is type

QueryMXPERSONResponseType.
v The QueryMXPERSONResponseType has element MXPERSONSet, which is type

MXPERSONSetType.
v The MXPERSONSetType has elements for all the configured attributes of the

PERSON object and elements for child objects defined in the object structure
(PHONE, EMAIL, and SMS).

v Although the QueryMXPERSON element restricts queries to the top object of the
object structure (PERSON), the response can contain child objects (PHONE,
EMAIL, and SMS).

Integrating data with external applications 367

The Query Response element uses the additional attributes rsStart, rsCount, and
Total, which are defined in the ResponseContentGroup in the metadata schema.

Collaboration switches
Collaboration switches use a concept of ownership to help users manage the
synchronization of inbound data between the integration framework and an
external system. The switches provide the ability to control specific subprocesses
within an application, based on the ownership of different data objects within a
transaction.

The primary object of the object structure for most master data and document
integration objects include an OWNERSYSID attribute. By default, inbound
integration processing does not specify any value in the OWNERSYSID field and
enterprise services are processed in a standard manner.

Format of collaboration switches
Collaboration switches provide a flexible, user-defined way to control the
processing of some inbound transactions through bypassing the default processing
for certain types of transactions. Collaboration switches are located in the
MXCOLLAB table.

Switch elements

Each collaboration switch contains four elements, three of which combine to create
a unique key. The following table lists these elements and the elements that
comprise the unique key are marked with an asterisk (*).

Element Corresponding MXCOLLAB field

Process control ID* PCID

System ID 1* OWNER1SYSID

System ID 2* OWNER2SYSID

Process control value PCVALUE

Process control ID

The process control ID identifies a business process in an application, such as the
validation of an invoice match, the creation of a blanket PO release, and the update
of a physical inventory count.

The following table shows the prefix of the process control ID and indicates the
application to which it applies.

Prefix of Process Control ID Corresponding Application

INV Invoice

ITM Item

IV Inventory

LT Labor

PO Purchase order

PR Purchase requisition

WO Work order

368 Integrating Data With External Applications

For example, the IVRC, IVRCY, and IVWO collaboration switches are all related to
inventory processing.

System ID values

System ID 1 and System ID 2 identify the internal and external systems. The
values in these fields vary, depending on the transaction and the objects in the
transaction. In general, System ID 1 identifies the system that creates an object, and
System ID 2 identifies the system that creates the record that is being referenced or
updated.

Process control value

The process control value specifies whether the business components bypass
default processing for the type of transaction indicated by the process control ID,
System ID 1, and the System ID 2. The process control value can be 0 (false) or 1
(true) and can have the following meanings:

Value of process control Description

0 Performs default processing

1 Bypasses default processing

Retrieving a collaboration switch
Each process control ID is associated with at least three collaboration switches, the
default switches and any switches that the user adds. The integration framework
provides the logic that determines which system ID values to set when retrieving a
collaboration switch from the MXCOLLAB table.

Procedure
1. The integration framework determines the values for System ID 1 and System

ID 2 based on the process control ID in an inbound transaction. For example,
if the process control ID is PRDEL, System ID 1 is THISMX, and System ID 2
is the system that owns the PR.

2. If the value in System ID 1 is blank, null, or equal to the value in the
MXSYSID row of the MAXVARS table, System ID 1 is set to THISMX .

3. If the value in System ID 2 is blank, null, or is equal to the value in the
MXSYSID row of the MAXVARS table, and the process control ID is not
PRPAB, System ID 2 is set to THISMX.

4. If the process control ID is PRPAB, the value in System ID 2 is set to null after
step 1, and System ID 2 is set to EXT (if a blanket PO does not exist).

5. If both System ID 1 and System ID 2 are now set to THISMX, default
processing is used and the remaining logic is not applied.

6. The MXCOLLAB table is checked, to identify if it contains a record with the
key. If the record exists, the process control value for the record indicates
whether to use or bypass standard processing and the remaining logic is not
applied.

7. If a matching record does not exist in the database, the key is modified in the
following manner:
v If System ID 1 now equals THISMX and System ID 2 does not equal

THISMX, EXT is set as the value for System ID 2.
v If System ID 1 value does not equal THISMX and System ID 2 equals

THISMX, EXT is set as the value for System ID 1.

Integrating data with external applications 369

8. The MXCOLLAB table is checked again, to identify if it contains a record with
the modified key. If the record exists, the process control value for the record
indicates whether to use or bypass standard processing and the remaining
logic is not applied.

9. EXT is set as the value for both System ID 1 and System ID 2.
10. The record with the modified key is retrieved from the MXCOLLAB table.

This record always exists, because every process control value has a default
collaboration switch with both system IDs set to EXT.

11. The process control value for the record indicates whether to use or bypass
standard processing.

Configuring collaboration switches
You can use predefined collaboration switches and you can configure new ones if
required.

Viewing collaboration switches:

Use any database tool to execute a SQL query to see the values in the MXCOLLAB
table, or generate a report to view its content.

Procedure

1. To view the collaboration switches for a single process control ID, use the
following SQL query:
select pcid, owner1sysid, owner2sysid, pcvalue
from mxcollab
where pcid = ’PCID’
order by pcid, owner1sysid, owner2sysid;

2. To view all collaboration switches, use the following SQL query:
select pcid, owner1sysid, owner2sysid, pcvalue
from mxcollab
order by pcid, owner1sysid, owner2sysid;

3. To view a short description of the process control IDs, use the following SQL
query:
select * from mxcollabref order by pcid;

Modifying a collaboration switch:

Authorized users can modify the process control value of a collaboration switch.
Do not change the value of PCID, OWNER1SYSID, or OWNER2SYSID values on
existing collaboration switches.

About this task

The values in the MXCOLLAB table are case-sensitive.

Procedure

1. Use a database tool to connect to the Maximo database.
2. Use the following SQL statement to change the process control value in a

collaboration switch :
update mxcollab
set pcvalue = PCVALUE
where pcid = 'PCID'
and owner1sysid = 'OWNER1SYSID'
and owner2sysid = 'OWNER2SYSID';

370 Integrating Data With External Applications

3. Restart the application server to refresh the cached values for collaboration
switches.

Adding a collaboration switch to the database:

Authorized users can add collaboration switches to the MXCOLLAB table. New
switches must use an existing process control ID, but they can use new system IDs.

About this task

Only the default collaboration switches can use the values THISMX and EXT in the
system ID fields.

Procedure

1. Use a database tool to connect to the Maximo database.
2. Use the following SQL statement to add a collaboration switch:

insert into mxcollab
(pcid, owner1sysid, owner2sysid, pcvalue)
values ('PCID', 'OWNER1SYSID', 'OWNER2SYSID', PCVALUE);

Example

For example, you can configure the integration framework to integrate with an
Oracle Financials system and other applications. When Oracle Financials issues
system-owned inventory, the integration framework accepts the transaction and
updates inventory balances and costs in the Maximo database. When other
applications issue system-owned inventory, the integration framework accepts the
transaction, but does not update inventory balances or costs in the Maximo
database.

Before you modify the MXCOLLAB table to reflect these conditions, the INV
collaboration switches have the following values:

Process Control ID System ID 1 System ID 2
Process Control
Value

INV THISMX EXT 1

INV EXT THISMX 0

INV EXT EXT 1

To modify the MXCOLLAB table, to support this scenario:
1. To update the collaboration switch, use the following SQL statement:

update mxcollab
set pcvalue = 1
where pcid = ’INV’
and owner1sysid = ’EXT’
and owner2sysid = ’THISMX’;

This statement changes the value of the INV/ EXT/ THISMX collaboration
switches to 1 to bypass normal update processing.

2. Use the following SQL statement to add a new collaboration switch for
transactions from the Oracle Financials system:

insert into mxcollab
(pcid, owner1sysid, owner2sysid, pcvalue)
values (’INV’, ’ORC’, ’THISMX’, 0);

Integrating data with external applications 371

The new collaboration switch sets ORC as the system ID, and sets the process
control value to 0 so that normal processing is applied to issue transactions
received from Oracle Financials. If the OWNERSYSID is blank, the value in the
DEFEXTSYS integration control is used.

After you perform this procedure, the INV collaboration switches have the
following values.

Process Control ID System ID 1 System ID 2
Process Control
Value

INV THISMX EXT 1

INV EXT THISMX 1

INV EXT EXT 1

INV ORC THISMX 0

For example, when you set the value of the ISUIN integration control to 1, issue
transactions are accepted from an external system. The INV collaboration switch
controls the update of inventory balance and cost related to issues. You can adjust
the setting of this switch, if necessary, to bypass that update process.

The INV/EXT/THISMX collaboration switch controls the processing of inventory
(where the Process Control ID = INV) that is issued in the external system (System
ID 1 = EXT) and owned by the system (System ID 2 = THISMX).

If the value of the INV/EXT/THISMX collaboration switch is 0, default processing
applies and inventory balance and cost values are updated.

If the value of the INV/EXT/THISMX collaboration switch is 1, default processing
is bypassed and inventory balance and cost values are not updated.

In the example, ISUIN accepts any issues into the system. The INV/EXT/THISMX
collaboration switch determines how the inventory business component processes a
specific type of issue.

Predefined collaboration switches
You can use the default collaboration switches and the predefined collaboration
switches that are provided.

Default collaboration switches:

Three default collaboration switches are created, with different combinations of
system ID values, for each process control ID. Authorized users can create
additional switches as needed.

The default switches use various combinations of the following values in the
System ID 1 and System ID 2 fields:

System ID
value Meaning

THISMX The system identified in MAXVARS.MXSYSID

The collaboration switches do not use the actual value in MXSYSID.

EXT Any system other than the one identified in MAXVARS.MXSYSID

372 Integrating Data With External Applications

Authorized users can update only the process control value in the default
collaboration switches. Deleting a default collaboration switch or modifying a field
other than the process control value can result in a system failure.

Inventory collaboration switches:

Predefined collaboration switches are provided for the Inventory application.

Process control ID Description Value and action
Derivation of
system ID 1

Derivation of
system ID 2

INV Update inventory.

Used when creating issues,
returns, or miscellaneous
receipts or adjustments.
Inventory must exist in
this system.

0

1

Update inventory.

Do not update
inventory.

INVTRANS or
MATUSETRANS

INVENTORY

INVDEL Delete inventory.

Used when deleting
externally owned
inventory. If value is 1, the
item-storeroom will still
exist on related open PRs,
POs, RFQs, work orders,
and so on. This might
result in problems
receiving/approving these
lines.

0

1

Delete item if it
passes normal
system validations.

Delete inventory
without any
validations and
delete
INVBALANCES
record for the
item.

“THISMX” INVENTORY

INVISS Enter item issues.

Used when issuing
material.

0

1

Allow material
issues for the
inventory.

Do not allow
material issues for
the inventory.

MATUSETRANS INVENTORY

INVISSR Enter item issue returns.

Used when returning
material.

0

1

Allow material
returns.

Do not allow issue
returns for the
material.

MATUSETRANS INVENTORY

INVISSWO Update work order actual
cost, equipment
INVCOSTs.

Used when processing
issues or returns. Meant to
handle system to system
cases where these updates
will be done separately.

0

1

Update work
order actual
material cost,
equipment
INVCOST.

Do not update
work order actual
material cost,
equipment
INVCOST.

MATUSETRANS WORKORDER

Integrating data with external applications 373

Process control ID Description Value and action
Derivation of
system ID 1

Derivation of
system ID 2

INVPHY Enter external physical
counts.

Used when creating
physical counts.

0

1

Allow physical
count for the
inventory.

Do not allow
physical count for
the inventory.

INVTRANS INVENTORY

INVTR Update the From
storeroom on a transfer or
the receipt of internal PO.

Used when creating
transfers or creating a
receipt for an internal POs.

0

1

Update
INVBALANCES in
the From
storeroom.

Do not update
INVBALANCES in
the From
storeroom.

MATRECTRANS LOCATIONS
(storeroom for
transfer; vendor
for internal PO)

ITMDEL Delete items.

Used when deleting items
that this system does not
own.

Attenion: If value is 1, the
item will still exist on
related open PRs, POs,
RFQs, work orders, and so
on. This might result in
problems
receiving/approving these
lines.

0

1

Delete item if it
passes normal
system validations.

Delete item
without any
validation. Also
delete
INVENTORY,
INVBALANCES,
and INVVENDOR
records for the
item.

“THISMX” ITEM

Invoice collaboration switches:

Predefined collaboration switches are provided for the Invoice application.

Process control ID Description Value and action
Derivation of
system ID 1

Derivation of
system ID 2

IVILC Update inventory
last cost.

Used when
approving invoices.

0

1

Update inventory
last cost.

Do not update
inventory last cost.

INVOICE INVENTORY

IVINV Update inventory
average cost.

Used when
approving invoices.

0

1

Update inventory
average cost.

Do not update
inventory average
cost.

INVOICE INVENTORY

374 Integrating Data With External Applications

Process control ID Description Value and action
Derivation of
system ID 1

Derivation of
system ID 2

IVMATCH Use and validate
invoice match.

Used when
approving invoices.

If set to 1, IVPO
should also be set
to 1.

0

1

Validate match.

Do not validate any
match provided.

“THISMX” INVOICE

IVPO Update POs and
receipts.

Used when
approving invoices.

0

1

Update PO status
and receipts.

Do not update PO
status or receipts.

INVOICE PO

IVPRO Check and prorate
differences between
invoice headers and
lines.

Used when
approving invoices.

0

1

Prorate the
difference between
the header and the
line total.

Do not prorate the
difference between
the header and line
total.

“THISMX” INVOICE

IVRC Create service
receipts for invoice
lines without a PO
reference.

Used when
approving invoices
that contain a line
without a PO
reference.

0

1

Generate a service
receipts for the
invoice lines that
do not have a PO
reference.

Do not generate a
service receipt for
the invoice lines
that do not have a
PO reference.

“THISMX” INVOICE

IVRCY Create service
receipts for invoice
lines with a PO
reference and
RECEIPTREQD =
N.

Used when
approving invoices
containing a line
with a PO
reference, when the
corresponding
POLINE is a service
and RECEIPTREQD
= N.

0

1

Generate a service
receipt for the
invoice line.

Do not generate a
service receipt for
the invoice line.

INVOICE PO

IVTOL Perform invoice
tolerance checking
validation.

Used when
approving invoices.

0

1

Perform all
tolerance checks on
invoice.

Do not perform
tolerance checks on
invoice.

“THISMX” INVOICE

Integrating data with external applications 375

Process control ID Description Value and action
Derivation of
system ID 1

Derivation of
system ID 2

IVVLC Update vendor last
cost.

Used when
approving invoices.

0

1

Update vendor last
cost.

Do not update
vendor last cost.

INVOICE INVVENDOR

IVWO Update work
orders.

Used when
approving invoice.

0

1

Update work order.

Do not update
work order.

INVOICE WORKORDER

Labor transaction collaboration switches:

Predefined collaboration switches are provided for labor transactions.

Process
Control ID Description Value and Action

Derivation
of System
ID 1

Derivation
of System
ID 2

LTSRC Generate service
receipts for POs.

Used when creating
labor transactions or
changing status. PO
must exist in this
system.

0

1

Allow setting value of LABTRANS.
GENAPPRSERVRECEIPT to Y;
configurable in the Application
Setup.

Leave value of LABTRANS.
GENAPPRSERVRECEIPT as N.

LABTRANS PO

Purchase order collaboration switches:

Predefined collaboration switches are provided for purchase orders.

Process
control ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

PODEL Delete POs.

Used when deleting
POs. Use only when
deleting then
subsequently re-adding
a PO due to changes in
the PO.

If any PRLINES contain
a reference to the PO,
clear them. If necessary,
reopen the PR. When
the PO is re-added, the
PRLINEs will be
established again.

0

1

Do not delete PO.

Delete PO and PRLINEs; do not
delete POSTATUS.

“THISMX” PO

376 Integrating Data With External Applications

Process
control ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

POINV Do not allow
unreferenced external
inventory for internal
POs.

Used when adding or
updating PO lines and
changing the status of
internal POs.

0

1

If the item-vendor combination not
in INVENTORY table, error.

If item-vendor combination not
found in INVENTORY table (where
PO.VENDOR = LOCATIONS.LOCATION),
ignore error.

PO LOCATIONS,
where vendor
is the
storeroom

POIVM Create inventory vendor
information for
inventory.

Used when approving
POs.

0

1

Update or create INVVENDOR
record.

Do not create INVVENDOR record.

PO ITEM of
POLINE

POPR Update status of PRs.

Used when copying PR
lines to POs, creating
POs from PRs,
reopening PRs.

0

1

Change status of PR (auto close
based on MAXVAR setting) or
reopen when POLINE containing PR
reference is deleted, or other
instances of reopen.

Do not change PR status.

PO PR

POREL Create releases for
blanket POs.

Used when approving
PR and the PR lines
contain a blanket
references, and when a
release is created
directly from a PO
without a PR.

0

1

Generate PO release. (If PRLINE.
AGREEMENTPONUM not in PO, do not
generate PO release).

Do not regenerate PO releases.

PR PO of the
blanket

PORES Process material
reservations.

Used when changing
the status of internal
POs.

0

1

Generate inventory reservations. If
item-vendor combination (where
vendor is internal storeroom) not in
INVENTORY table, do not generate
PO reservations. This might happen
if POINV is 0.

Do not generate inventory
reservations.

PO INVENTORY

Integrating data with external applications 377

Purchase requisition collaboration switches:

Predefined collaboration switches are provided for purchase requisitions.

Process control
ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

PRDEL Delete PRs.

Used when
deleting PRs.
Use only when
deleting then
subsequently
re-adding a PR
due to changes
in the PR.

If WPMATERIAL
or MRLINE
contain
references to
the PR, clear
them. They will
be reestablished
when you read
PR.

0

1

Do not delete PR.

Delete the PR and PRLINES; do not
delete PRSTATUS.

“THISMX” PR

378 Integrating Data With External Applications

Process control
ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

PRINV Do not allow
unreferenced
external
inventory on
internal PRs.

Used when
storerooms are
maintained in
an external
system. Items
are in ITEM
master in the
system;
storeroom is
defined as a
LOCATION;
INVENTORY is
not defined for
item-storeroom
combination
because it is
not owned by
the system.

The owner of
the PR is the
MXSYSID of
the system that
creates the PR.
Validation
occurs when an
item-storeroom
(INVENTORY)
is validated on
the PRLINE.
The
OWNERSYSID
of the
storeroom is
compared with
the
OWNERSYSID
of the PR, and
the flag
determines if
the
combination is
allowed.

0

1

If the item-vendor combination is not
in INVENTORY table, error.

If the item-vendor combination
(vendor is the internal storeroom) is
not in INVENTORY table, where

PR.VENDOR = LOCATIONS.LOCATION,
ignore error. LOCATIONS must exist;
that is, pass standard validation for
the location.

PR LOCATIONS,
where vendor
is the internal
storeroom

Integrating data with external applications 379

Process control
ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

PRPAB Do not allow
unreferenced
external
purchase
agreements /
blankets.

Used when
adding or
updating PR
lines and
changing the
status of PRs.

0

1

If PRLINE.AGREEMENTPONUM is not in
PO, error.

If PRLINE.AGREEMENTPONUM is not in
PO, ignore error.

PR “EXT”

Normally this
would be from
PO of the
blanket, but in
this case the
blanket PO
does not exist

Receipt collaboration switches:

Predefined collaboration switches are provided for receipts.

Process control
ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

RC Enter PO receipts.

Used when
creating receipts.

0

1

Allow receiving
against the PO.

Do not allow
receiving against
the PO.

MATRECTRANS
or
SERVRECTRANS

PO

RCILC Update inventory
last cost.

Used when
approving
receipts.

0

1

Update inventory
last cost.

Do not update
inventory last
cost.

MATRECTRANS INVENTORY

RCINV Update inventory.

Used when
receiving, or
approving
receipts.

0

1

Update inventory
if it exists.

Do not update
inventory.

MATRECTRANS INVENTORY

RCIV Generate invoices
for PO receipts.

Used when
approving
receipts.

0

1

Generate invoice
if value of
PayOnReceipt is
set.

Do not generate
invoice, even if
value of
PayOnReceipt is
set.

MATRECTRANS
or
SERVRECTRANS

PO

RCPO Update external
PO.

Used when
approving receipt.

0

1

Update PO.

Do not update
PO.

MATRECTRANS
or
SERVRECTRANS

PO

380 Integrating Data With External Applications

Process control
ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

RCR Enter PO receipt
return.

Used when
creating receipt
return.

0

1

Allow receipt
returns for the
PO.

Do not allow
receipt returns for
the PO.

MATRECTRANS
or
SERVRECTRANS

PO

RCVLC Update vendor
last cost.

Used when
approving receipt
or receiving PO
line.

0

1

Update vendor
last cost.

Do not update
vendor last cost.

MATRECTRANS INVVENDOR

RCWO Update work
orders.

Used when
approving
receipts.

0

1

Update work
order.

Do not update
work order.

MATRECTRANS
or
SERVRECTRANS

WORKORDER

Work order collaboration switches:

Predefined collaboration switches are provided for work orders.

Process control
ID Description Value and action

Derivation of
system ID 1

Derivation of
system ID 2

WORES Process material
reservations.

Used when
changing the
status of a work
order. Inventory
must exist in this
system.

0

1

Generate
inventory
reservation.

Do not generate
inventory
reservation.

WORKORDER INVENTORY

Integrating data with external applications 381

382 Integrating Data With External Applications

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2008, 2014 383

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

384 Integrating Data With External Applications

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 385

386 Integrating Data With External Applications

����

Printed in USA

	Contents
	Integrating data with external applications
	Integration framework overview
	Architecture
	Framework for data exchange
	Framework for operational management product integration
	Framework for user interface integration

	Enabling data export and import
	Preparing the system
	Configuring JMS queues
	Configuring integration properties
	Activating the cron task for JMS queues
	Exporting data to a test file
	Importing data from a test file

	Integration components
	Object structures
	Object identification
	Alternate keys
	Object fields
	Interface table and flat file considerations
	Modification of a predefined object structure
	Configuring an object structure
	Creating object structures
	Configuring an alternate key
	Including nonpersistent fields in the object structure
	Excluding persistent fields from the object structure
	Resolving alias conflicts
	Setting restrictions on fields in inbound messages
	Setting advanced configurations for an object structure

	Channels and services
	Publish channels
	Configuring a publish channel

	Invocation channels
	Creating invocation channels
	Configuring an action to call an invocation channel
	Invoking an external system from an application

	Object structure services
	Enterprise services
	Configuring an enterprise service

	Standard services

	Endpoints and handlers
	Configuring an endpoint
	Creating endpoints
	Adding a handler to an endpoint
	Writing custom handlers

	Predefined endpoint handlers
	Enterprise bean handler
	Flat file handler
	HTTP handler
	IFACETABLE handler
	JMS handler
	Web service handler
	Web service handler (JAX-WS)
	XML file handler
	Command line handler

	Integration web services
	Web service sources
	JMS queue settings for enterprise web services

	Web service deployment options
	Web service deployment actions
	Schema generation
	Generation of a Web Services Description Language file
	UDDI registration
	Creating and deploying web services
	Creating a web service
	Deploying a web service to the product web service container
	Deploying a web service to the application server web service container
	Updating schema information

	Web service interactions overview
	Creating interactions

	External systems
	Configuring an external system
	Creating an external system
	Enabling a publish channel
	Enabling an enterprise service
	Adding queues to an external system
	Creating interface tables
	Working with integration controls

	Predefined integration content
	Master data objects
	Asset object
	Chart of Account object
	Classification item object
	Craft object
	Financial project object
	General ledger (GL) component object
	Labor object
	Person object
	Person/user object
	Storeroom location object
	Vendor (Companies) master object Structure object
	Vendor (Companies) object

	Item and inventory objects
	Item object
	Service item object
	Tool item object
	Inventory object
	Inventory balance object
	Item vendor object
	Inventory reservations object
	Inventory issues object

	Documents objects
	The STATUSIFACE field and processing
	Purchase contracts object
	Purchase requisitions object
	Purchase order object
	Invoice object
	Outbound processing rules for work order interfaces
	Work order object
	Work order detail object
	Work order hierarchy object

	Transaction interface objects
	Receipts object for materials and services
	Material and rotating item receipt object
	General ledger (GL) object
	Labor time reporting object
	Meter reading object

	System objects
	Object structures object
	Enterprise service object
	Publish channel object
	End point object
	External system object
	Integration control object
	Invocation channel object
	Integration queue object
	Message definition object
	MBO configuration object
	Domain object
	Communication template object
	Action definition object
	System properties object
	Integration module object
	Logical management operations (LMO) object
	Operational management product (OMP) object
	Launch entry object

	Data loading order

	Integration data processing
	Planning to process data for integration
	Inbound data processing
	Asynchronous processing of inbound messages
	Synchronous processing of inbound messages
	Initiation of asynchronous processing of inbound data
	Initiation of synchronous processing of inbound data
	Processing sequences
	Enterprise service processing sequences
	Synchronous integration with an object structure service
	Synchronous integration with a standard service

	Outbound data processing
	Asynchronous integration with a publish channel
	Publish channel processing overview

	Synchronous integration with an invocation channel
	Customization of metadata properties in an invocation channel

	Configuring integration processing
	Configuring asynchronous processing of inbound messages by using enterprise services
	Configuring asynchronous processing of outbound messages by using publish channels

	Rule-based customization
	Rule definitions for objects and records
	Processing rule definitions
	Processing rule initiation
	Processing rule actions
	Processing sequence

	Conditions and evaluations
	Condition specifications
	Evaluation category specifications
	Field to evaluate
	Type of evaluation
	When to evaluate a field
	Comparison field specifications

	Integration controls
	Control levels
	Control types
	New control creation

	Configuring processing rules
	Defining integration control or system control evaluations
	Defining processing rules
	Adding controls
	Associating integration controls to enterprise services or publish channels
	Managing data in sub-record fields

	Code-based customization
	Customization Java classes and methods
	External exit classes
	User exit classes
	Event filter classes
	Handler exit classes

	Customization with automation scripts
	Creating automation scripts for integration
	Customization of object structure processing with automation scripts
	Customization of channel and service processing by using automation scripts

	XSL mapping
	Interface table user exit class

	Configuring the integration framework
	Integration system properties
	JMS queue configuration
	Creating and configuring a queue
	Queue properties

	Sequential queues
	Continuous queues
	Enabling message beans
	Continuous queue performance
	Configuring message beans
	Message caching
	Configuring an error queue for the continuous queue

	Queue message format
	Messages in text format

	Queue selectors
	Viewing and deleting messages in a JMS queue
	Configuring queues with WebSphere MQ
	Configuring JMS endpoints and handlers
	Configuring integration queues and WebSphere MQ provider

	Error management
	Non-queue error management
	Queue-based error management
	Configuring error management
	Configure error management properties
	Configuring error management on the external system

	Error notification
	Message reprocessing
	Message status values
	Error XML messages
	Critical errors
	Correcting errors

	Error management with file-based data import
	File-based error management
	Configuring error management in data import cron tasks
	Information extracted by file-based error management

	Interface table error management
	Common causes of errors
	Error research
	Message tracking
	Message details
	Message status values
	Message events
	Message tracking configuration
	Enabling message tracking

	Cluster configuration
	JMS queues in a server cluster
	Continuous queue on an application server cluster
	Sequential queue on an application server cluster

	Configuring the cron task
	Configuring a message processing server
	Global directory configuration
	Access to services by inbound messages

	Integration security
	Authentication security
	Configuring J2EE security
	Interface table security
	Securing remote integration APIs
	Outbound router handler security

	Authorization security

	Language support
	Default processing of multiple languages
	Multilanguage attributes
	Bidirectional language support
	Bidirectional language formats
	Configuring bidirectional language support for external systems

	Exporting and importing file-based data
	Exporting and importing data in the External Systems application
	Exporting file-based data
	Importing file-based data

	Cron tasks for processing inbound data
	XMLFILECONSUMER cron task
	FLATFILECONSUMER cron task

	Configuring an application for data export and import
	Defining the object structure content
	Enabling data import and export in an application
	Initiating data export and import in an application
	Starting data export in an application
	Starting a data import in an application

	REST API
	REST API framework
	Supported representations
	Resource handlers and URIs
	GET method
	Query parameters and operators
	_opmodeor parameter
	_rsStart and _maxItems parameters
	_orderbyasc parameter
	_includecols and _excludecols parameters
	_dropnulls parameter
	_format and _compact parameters
	Content negotiation of representations
	In-session scrolling
	Caching of GET requests

	PUT, POST, and DELETE methods
	PUT method
	POST method
	DELETE method
	Concurrent updates of resources

	Service method queries and updates
	Service methods that use HTTP POST to update resources
	Service methods that use HTTP GET to query resources
	Service methods that use HTTP GET to query system data

	HTTP header properties
	Response codes
	Security in the REST API
	Customization of the REST API
	REST query parameters
	REST system properties
	External service calls

	OSLC integration
	OSLC implementation in Maximo Asset Management
	OSLC configuration
	Specification of OSLC resources
	Domain service providers
	Saved queries
	OSLC security
	OSLC logging

	HTTP transactions
	OSLC resource queries
	Query properties parameter
	Query WHERE clause parameter
	Query search parameter
	Query sort parameter
	Query select parameter

	Creation of a resource instance
	Modification of resources
	Replacement of an OSLC resource
	Partial update of an OSLC resource

	HTTP headers
	HTTP response codes

	Integrating as an OSLC consumer
	Creation of OSLC provider records
	Registry Services
	Service providers
	Resource types and shape documents
	Endpoints in OSLC integration

	Designing an OSLC interaction
	Example: Designing an OSLC creation or selection interaction
	Example: Designing an OSLC query interaction

	Creating interaction groups
	Example: Running an OSLC interaction
	Public URI changes
	Migration of OSLC integrations
	Manual UI modification
	Manual implementation of UI changes and security for interactions
	User interface refinements
	Translation of untranslated UI elements

	OSLC properties

	Integration queries
	Query services
	Creating an enterprise service query
	Web service queries
	Query XML structure
	Query selection criteria
	Field selection
	Field evaluation
	Range selection
	Where clause selection

	Interface tables
	Creation of interface tables
	Regeneration of interface tables
	Deletion of interface tables and records
	Format of interface tables
	Interface table polling
	Interface table polling cron task
	Advanced interface table polling

	Processing interface tables on an external system
	Enabling inbound processing
	Enabling outbound processing

	Integration modules
	Integration module components
	Integration module definitions
	Operational management products
	Logical management operations

	Implementation prerequisites
	Implementation properties
	Integration module parameters
	Integration module process flow
	Endpoints

	Invocation channel or Java class implementation
	Invocation channel and Java class comparison
	Invocation channel implementation
	Java class implementation

	Integration module processing
	Identification of integration components
	Integration module invocation
	Service invoker property map
	Invoke methods
	Operational management product service method
	Service invoker utility methods

	Integration module response processing

	Configuring integration modules
	Creating integration modules
	Selecting logical management operations for integration modules
	Selecting logical management operations for operational management products

	Associating a logical management operation with an integration module
	Associating an operational management product with an integration module

	Configuring logical management operations
	Creating logical management operations
	Adding attributes to logical management operations

	Launch in Context feature
	Preparation of the external application
	Launch entry URL into an external application
	Launch entry URL into a product application
	Enabling launch-in-context
	Creating a launch entry
	Properties specific to operational management products

	Configuring a signature option for a launch point
	Adding a launch point to an application menu
	Adding a button as a launch point
	Adding a condition to a launch point
	Signature option conditions

	Integration reference information
	Integration system properties
	Integration XML
	Overview
	XML structure
	Root element and attributes
	Object structure element
	Object elements and attributes
	Object field elements and attributes

	Integration XML schemas
	XML schemas overview
	Schema structures

	Collaboration switches
	Format of collaboration switches
	Retrieving a collaboration switch
	Configuring collaboration switches
	Viewing collaboration switches
	Modifying a collaboration switch
	Adding a collaboration switch to the database

	Predefined collaboration switches
	Default collaboration switches
	Inventory collaboration switches
	Invoice collaboration switches
	Labor transaction collaboration switches
	Purchase order collaboration switches
	Purchase requisition collaboration switches
	Receipt collaboration switches
	Work order collaboration switches

	Notices
	Trademarks

